Home
Class 12
MATHS
cos^(-1)x=tan^(-1)x then...

`cos^(-1)x=tan^(-1)x` then

A

`x^(2)=(sqrt(5)-1)/(2)`

B

`x^(2)=(sqrt(5)+1)/(2)`

C

`sin(cos^(-1)x)=(sqrt(5)-1)/(2)`

D

`tan(cos^(-1)x)=(sqrt(5)-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}x = \tan^{-1}x \), we will follow these steps: ### Step 1: Set the equations Let \( \theta = \cos^{-1}x = \tan^{-1}x \). This gives us two equations: 1. \( x = \cos\theta \) 2. \( x = \tan\theta \) ### Step 2: Use the identity relating tan and cos We know the identity: \[ \tan\theta = \frac{\sin\theta}{\cos\theta} \] Using the Pythagorean identity, we have: \[ \tan^2\theta + 1 = \sec^2\theta \] This means: \[ \tan^2\theta = \sec^2\theta - 1 \] ### Step 3: Substitute for \( x \) From the equations we set, we can express \( \tan\theta \) in terms of \( x \): \[ \tan^2\theta = x^2 \] Substituting this into the identity gives: \[ x^2 = \sec^2\theta - 1 \] ### Step 4: Express secant in terms of cosine We know that: \[ \sec\theta = \frac{1}{\cos\theta} \] Thus: \[ \sec^2\theta = \frac{1}{\cos^2\theta} \] Substituting this into the equation gives: \[ x^2 = \frac{1}{\cos^2\theta} - 1 \] Rearranging gives: \[ x^2 + 1 = \frac{1}{\cos^2\theta} \] ### Step 5: Solve for \( \cos^2\theta \) Taking the reciprocal: \[ \cos^2\theta = \frac{1}{x^2 + 1} \] ### Step 6: Equate the two expressions for \( \cos\theta \) From the first equation, we have: \[ x = \cos\theta \] Squaring both sides gives: \[ x^2 = \cos^2\theta \] Now we can equate the two expressions for \( \cos^2\theta \): \[ x^2 = \frac{1}{x^2 + 1} \] ### Step 7: Cross-multiply and simplify Cross-multiplying gives: \[ x^2(x^2 + 1) = 1 \] Expanding this results in: \[ x^4 + x^2 - 1 = 0 \] ### Step 8: Let \( y = x^2 \) Letting \( y = x^2 \), we rewrite the equation as: \[ y^2 + y - 1 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 10: Determine valid solutions Since \( y = x^2 \) must be non-negative, we discard the negative solution: \[ y = \frac{-1 + \sqrt{5}}{2} \] Thus: \[ x^2 = \frac{-1 + \sqrt{5}}{2} \] ### Final Answer The solution for \( x^2 \) is: \[ \boxed{\frac{-1 + \sqrt{5}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

For some x in [-1, 1] we have cos^(-1)x =tan^(-1)x . The value of x^(2) is :

For some x in [-1, 1] we have cos^(-1)x =tan^(-1)x . The value of sin(cos^(-1)x) is:

The solution(s) of the equation cos^(-1)x=tan^(-1)x satisfy

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b , then:

The number of integers for which the equation sin^(-1)x+cos^(-1)x+tan^(-1)x=n has real solution(s) is

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

The number of rational numbers in the domain of function y=sin^(-1)x+cos^(-1)x+tan^(-1)x+"cosec"^(-1)x+sec^(-1)x+cot^(-1)x , is ___________ .

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |

  2. If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2), then:

    Text Solution

    |

  3. For the equation 2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3) , w...

    Text Solution

    |

  4. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  5. cos^(-1)x=tan^(-1)x then

    Text Solution

    |

  6. Which of the following is/are correct?

    Text Solution

    |

  7. Let x1,x2,x3,x4 be four non zero numbers satisfying the equation tan^...

    Text Solution

    |

  8. The least value of n for which (n -2) x^(2) + 8 x + n + 4 gt sin^...

    Text Solution

    |

  9. For x,y,z,t in R, if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*...

    Text Solution

    |

  10. Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10...

    Text Solution

    |

  11. The number of rational numbers in the domain of function y=sin^(-1)...

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2)....

    Text Solution

    |

  13. Match the Column I with Column II and mark the correct option from the...

    Text Solution

    |

  14. Let t(1)= (sin^(-1)x)^(sin^(-1)x),t(2)= (sin^(-1) x)^(cos^(-1)x),t(3) ...

    Text Solution

    |

  15. If cos^(-1)(4x^3-3x)=a+bcos^(-1)x" for "-1 lt x lt -1/2, then [a + b+ ...

    Text Solution

    |

  16. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  17. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0 when...

    Text Solution

    |

  18. The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2...

    Text Solution

    |

  19. Sum of infinite terms of the series cos^(-1) ( 1^(2) + 3/4) + cot^(-...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |