Home
Class 12
MATHS
Let x1,x2,x3,x4 be four non zero numbers...

Let `x_1,x_2,x_3,x_4` be four non zero numbers satisfying the equation `tan^-1 (a/x)+tan^-1(b/x)+tan^-1(c/x)+tan^-1(d/x)=pi/2` then which ofthe following relation(s) hold good?

A

`sum_(i=1)^(4)x_(i)=a+b+c+d`

B

`sum_(i=1)^(4)(1)/(x_(i))=0`

C

`prod_(i=1)^(4)x_(i)=abcd`

D

`(x_(1)+x_(2)+x_(3))(x_(2)+x_(3)+x_(4))(x_(3)+x_(4)+x_(1))(x_(4)+x_(1)+x_(2))=abcd`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) + \tan^{-1}\left(\frac{c}{x}\right) + \tan^{-1}\left(\frac{d}{x}\right) = \frac{\pi}{2}, \] we will use the property of the tangent inverse function and some algebraic manipulations. ### Step 1: Use the property of tangent inverse We know that \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right), \] provided \(AB < 1\). We will apply this property iteratively. ### Step 2: Combine the first two terms Let \(A = \frac{a}{x}\) and \(B = \frac{b}{x}\). Then, \[ \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \tan^{-1}\left(\frac{\frac{a}{x} + \frac{b}{x}}{1 - \frac{ab}{x^2}}\right) = \tan^{-1}\left(\frac{a + b}{x} \cdot \frac{x^2}{x^2 - ab}\right). \] ### Step 3: Combine the next two terms Now, let \(C = \frac{c}{x}\) and \(D = \frac{d}{x}\). Similarly, we have: \[ \tan^{-1}\left(\frac{c}{x}\right) + \tan^{-1}\left(\frac{d}{x}\right) = \tan^{-1}\left(\frac{c + d}{x} \cdot \frac{x^2}{x^2 - cd}\right). \] ### Step 4: Combine the results from Steps 2 and 3 Now we combine the results of Steps 2 and 3: \[ \tan^{-1}\left(\frac{a + b}{x} \cdot \frac{x^2}{x^2 - ab}\right) + \tan^{-1}\left(\frac{c + d}{x} \cdot \frac{x^2}{x^2 - cd}\right) = \frac{\pi}{2}. \] Using the property again, we can write: \[ \tan^{-1}\left(\frac{\frac{(a + b)x + (c + d)x}{x^2}}{1 - \frac{(a + b)(c + d)}{x^2}}\right) = \frac{\pi}{2}. \] ### Step 5: Set the denominator to zero For the tangent inverse to equal \(\frac{\pi}{2}\), the denominator must equal zero: \[ 1 - \frac{(a + b)(c + d)}{x^2} = 0. \] This leads to: \[ x^2 = (a + b)(c + d). \] ### Step 6: Analyze the polynomial Now, we can analyze the polynomial formed by the roots \(x_1, x_2, x_3, x_4\). The polynomial can be expressed as: \[ x^4 - (ab + cd + ac + ad + bc + bd)x^2 + abcd = 0. \] ### Step 7: Find the sum and product of roots Using Vieta's formulas, we find: - The sum of the roots \(x_1 + x_2 + x_3 + x_4 = 0\) (since the coefficient of \(x^3\) is zero). - The product of the roots \(x_1 x_2 x_3 x_4 = abcd\). ### Conclusion Thus, the relations that hold good are: 1. \(x_1 + x_2 + x_3 + x_4 = 0\) 2. \(x_1 x_2 x_3 x_4 = abcd\)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

If tan x + tan 2x + tan 3x = 0 then which of the following can hold good ?

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |

  2. If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2), then:

    Text Solution

    |

  3. For the equation 2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3) , w...

    Text Solution

    |

  4. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  5. cos^(-1)x=tan^(-1)x then

    Text Solution

    |

  6. Which of the following is/are correct?

    Text Solution

    |

  7. Let x1,x2,x3,x4 be four non zero numbers satisfying the equation tan^...

    Text Solution

    |

  8. The least value of n for which (n -2) x^(2) + 8 x + n + 4 gt sin^...

    Text Solution

    |

  9. For x,y,z,t in R, if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*...

    Text Solution

    |

  10. Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10...

    Text Solution

    |

  11. The number of rational numbers in the domain of function y=sin^(-1)...

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2)....

    Text Solution

    |

  13. Match the Column I with Column II and mark the correct option from the...

    Text Solution

    |

  14. Let t(1)= (sin^(-1)x)^(sin^(-1)x),t(2)= (sin^(-1) x)^(cos^(-1)x),t(3) ...

    Text Solution

    |

  15. If cos^(-1)(4x^3-3x)=a+bcos^(-1)x" for "-1 lt x lt -1/2, then [a + b+ ...

    Text Solution

    |

  16. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  17. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0 when...

    Text Solution

    |

  18. The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2...

    Text Solution

    |

  19. Sum of infinite terms of the series cos^(-1) ( 1^(2) + 3/4) + cot^(-...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |