Home
Class 12
MATHS
For x,y,z,t in R, if sin^(-1)x+cos^(-1)y...

For `x,y,z,t in R`, if `sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi`, then the value of `tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t)` is __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given inequality: \[ \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \geq t^2 - \sqrt{2\pi} t + 3\pi \] ### Step 1: Determine the ranges of the inverse trigonometric functions - The range of \(\sin^{-1} x\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). - The range of \(\cos^{-1} y\) is \([0, \pi]\). - The range of \(\sec^{-1} z\) is \([0, \frac{\pi}{2}] \cup [\frac{\pi}{2}, \pi]\). ### Step 2: Calculate the maximum value of the left-hand side Adding the maximum values from each range: \[ \sin^{-1} x + \cos^{-1} y + \sec^{-1} z \leq \frac{\pi}{2} + \pi + \pi = \frac{5\pi}{2} \] ### Step 3: Set up the inequality Now we have: \[ \frac{5\pi}{2} \geq t^2 - \sqrt{2\pi} t + 3\pi \] ### Step 4: Rearranging the inequality Rearranging gives: \[ t^2 - \sqrt{2\pi} t + 3\pi - \frac{5\pi}{2} \leq 0 \] This simplifies to: \[ t^2 - \sqrt{2\pi} t + \frac{1\pi}{2} \leq 0 \] ### Step 5: Completing the square To complete the square: \[ t^2 - \sqrt{2\pi} t + \left(\frac{\sqrt{2\pi}}{2}\right)^2 - \left(\frac{\sqrt{2\pi}}{2}\right)^2 + \frac{\pi}{2} \leq 0 \] This becomes: \[ \left(t - \frac{\sqrt{2\pi}}{2}\right)^2 - \frac{2\pi}{4} + \frac{\pi}{2} \leq 0 \] Simplifying: \[ \left(t - \frac{\sqrt{2\pi}}{2}\right)^2 \leq 0 \] This implies: \[ t - \frac{\sqrt{2\pi}}{2} = 0 \implies t = \frac{\sqrt{2\pi}}{2} \] ### Step 6: Finding values of \(x\), \(y\), and \(z\) Substituting \(t = \frac{\sqrt{2\pi}}{2}\): - Since \(\sin^{-1} x = \frac{\pi}{2}\), we have \(x = 1\). - Since \(\cos^{-1} y = \pi\), we have \(y = -1\). - Since \(\sec^{-1} z = \pi\), we have \(z = -1\). ### Step 7: Calculate \(tan^{-1} x + tan^{-1} y + tan^{-1} z + tan^{-1}(\sqrt{\frac{2}{\pi}} t)\) Now substituting \(x\), \(y\), and \(z\): \[ \tan^{-1} 1 + \tan^{-1} (-1) + \tan^{-1} (-1) + \tan^{-1} \left(\sqrt{\frac{2}{\pi}} \cdot \frac{\sqrt{2\pi}}{2}\right) \] Calculating: - \(\tan^{-1} 1 = \frac{\pi}{4}\) - \(\tan^{-1} (-1) = -\frac{\pi}{4}\) - \(\tan^{-1} (-1) = -\frac{\pi}{4}\) - \(\tan^{-1} \left(\sqrt{\frac{2}{\pi}} \cdot \frac{\sqrt{2\pi}}{2}\right) = \tan^{-1} 1 = \frac{\pi}{4}\) ### Step 8: Final calculation Combining these: \[ \frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} + \frac{\pi}{4} = 0 \] Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2pi , then find the value of x^2+y^2+z^2+t^2 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If r,s,t are the roots of the equation x(x-2)(3x-7)=2 ,then the value of tan^(-1)(r)+tan^(-1)(s)+tan^(-1)(t) is

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |

  2. If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2), then:

    Text Solution

    |

  3. For the equation 2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3) , w...

    Text Solution

    |

  4. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  5. cos^(-1)x=tan^(-1)x then

    Text Solution

    |

  6. Which of the following is/are correct?

    Text Solution

    |

  7. Let x1,x2,x3,x4 be four non zero numbers satisfying the equation tan^...

    Text Solution

    |

  8. The least value of n for which (n -2) x^(2) + 8 x + n + 4 gt sin^...

    Text Solution

    |

  9. For x,y,z,t in R, if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*...

    Text Solution

    |

  10. Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10...

    Text Solution

    |

  11. The number of rational numbers in the domain of function y=sin^(-1)...

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2)....

    Text Solution

    |

  13. Match the Column I with Column II and mark the correct option from the...

    Text Solution

    |

  14. Let t(1)= (sin^(-1)x)^(sin^(-1)x),t(2)= (sin^(-1) x)^(cos^(-1)x),t(3) ...

    Text Solution

    |

  15. If cos^(-1)(4x^3-3x)=a+bcos^(-1)x" for "-1 lt x lt -1/2, then [a + b+ ...

    Text Solution

    |

  16. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  17. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0 when...

    Text Solution

    |

  18. The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2...

    Text Solution

    |

  19. Sum of infinite terms of the series cos^(-1) ( 1^(2) + 3/4) + cot^(-...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |