Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2),` then `A=x^(2)+y^(2)+z^(2)`.
`(sin^(-1)x)^(2)+(sin^(-1)y)^(2)+(sin^(-1)z)^(2)=(3pi^(2))/(4)`, then `B=|(x+y+z)_("min")|`. Then the value of `(A+B)` is _____________ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations step by step. ### Step 1: Analyze the first equation We are given that: \[ \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2} \] The range of \(\sin^{-1}\) function is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). The only way for the sum of three angles (each in this range) to equal \(\frac{3\pi}{2}\) is if each angle is equal to \(\frac{\pi}{2}\). Therefore: \[ \sin^{-1} x = \frac{\pi}{2}, \quad \sin^{-1} y = \frac{\pi}{2}, \quad \sin^{-1} z = \frac{\pi}{2} \] This implies: \[ x = 1, \quad y = 1, \quad z = 1 \] ### Step 2: Calculate \(A\) Now we can calculate \(A\): \[ A = x^2 + y^2 + z^2 = 1^2 + 1^2 + 1^2 = 1 + 1 + 1 = 3 \] ### Step 3: Analyze the second equation Next, we look at the second equation: \[ (\sin^{-1} x)^2 + (\sin^{-1} y)^2 + (\sin^{-1} z)^2 = \frac{3\pi^2}{4} \] Substituting the values we found: \[ \left(\frac{\pi}{2}\right)^2 + \left(\frac{\pi}{2}\right)^2 + \left(\frac{\pi}{2}\right)^2 = \frac{3\pi^2}{4} \] This confirms that our values of \(x\), \(y\), and \(z\) are correct. ### Step 4: Calculate \(B\) Now we need to find \(B\): \[ B = |(x+y+z)_{min}| \] Since \(x = 1\), \(y = 1\), and \(z = 1\), the minimum value of \(x + y + z\) occurs when we consider the possible minimum values of \(x\), \(y\), and \(z\) in the context of the sine inverse function. The minimum values of \(x\), \(y\), and \(z\) can be \(-1\) (since \(\sin^{-1}(-1) = -\frac{\pi}{2}\)). Thus: \[ x + y + z = -1 - 1 - 1 = -3 \] Therefore: \[ B = |-3| = 3 \] ### Step 5: Calculate \(A + B\) Finally, we calculate \(A + B\): \[ A + B = 3 + 3 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(100)+z^(100)-(9)/(x^(101)+y^(101)+z^(101)) is

If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2 , find the value of x^2+y^2+z^2 .

If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2 , find the value of x^2+y^2+z^2 .