Home
Class 12
MATHS
The sum to infinite terms of the series ...

The sum to infinite terms of the series `cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+...` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum to infinite terms of the series \[ \cot^{-1}\left(2^2 + \frac{1}{2}\right) + \cot^{-1}\left(2^3 + \frac{1}{2^2}\right) + \cot^{-1}\left(2^4 + \frac{1}{2^3}\right) + \ldots \] we can follow these steps: ### Step 1: Identify the general term of the series The general term of the series can be expressed as: \[ \cot^{-1}\left(2^r + \frac{1}{2^{r-1}}\right) \quad \text{for } r = 2, 3, 4, \ldots \] ### Step 2: Rewrite the general term We can rewrite the term inside the cotangent inverse function: \[ \cot^{-1}\left(2^r + \frac{1}{2^{r-1}}\right) = \cot^{-1}\left(\frac{2^{r+1} + 1}{2^r}\right) \] ### Step 3: Use the identity for cotangent inverse Using the identity \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] we can express the general term as: \[ \cot^{-1}\left(2^r + \frac{1}{2^{r-1}}\right) = \tan^{-1}\left(\frac{2^r}{2^{r+1} + 1}\right) \] ### Step 4: Find the sum of the series Now we can express the sum of the series as: \[ S = \sum_{r=2}^{\infty} \tan^{-1}\left(\frac{2^r}{2^{r+1} + 1}\right) \] ### Step 5: Use the telescoping nature of the series Notice that: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right) \] This suggests that we can express the series in a telescoping form. We can rewrite: \[ \tan^{-1}(2^{r+1}) - \tan^{-1}(2^r) \] Thus, the series can be rewritten as: \[ S = \left(\tan^{-1}(2^3) - \tan^{-1}(2^2)\right) + \left(\tan^{-1}(2^4) - \tan^{-1}(2^3)\right) + \ldots \] ### Step 6: Evaluate the limit as \( r \to \infty \) As \( r \) approaches infinity, \( \tan^{-1}(2^r) \) approaches \( \frac{\pi}{2} \). Therefore, the sum becomes: \[ S = \lim_{n \to \infty} \left(\tan^{-1}(2^{n+1}) - \tan^{-1}(2^2)\right) = \frac{\pi}{2} - \tan^{-1}(4) \] ### Step 7: Final expression Using the identity \( \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} \): \[ S = \frac{\pi}{2} - \tan^{-1}(4) = \cot^{-1}(4) \] Thus, the sum to infinite terms of the series is: \[ \boxed{\tan^{-1}(2)} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If the sum of first 16 terms of the series s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+ up to terms is cot^(-1)((1+2^n)/(2(2^(16)-1))) , then find the value of ndot

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

The sum of the infinite series cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

FInd the sum of infinite terms of the series 1/(1.2.3)+1/(2.3.4)+1/(3.4.5).....

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The sum to n terms of series 1+(1+1/2+1/(2^2))+(1+1/2+1/(2^2)+1/(2^3))+ is

The sum of 10 terms of the series 1+2(1.1)+3(1.1)^(2)+4(1.1)^(3)+…. is

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |

  2. If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2), then:

    Text Solution

    |

  3. For the equation 2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3) , w...

    Text Solution

    |

  4. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  5. cos^(-1)x=tan^(-1)x then

    Text Solution

    |

  6. Which of the following is/are correct?

    Text Solution

    |

  7. Let x1,x2,x3,x4 be four non zero numbers satisfying the equation tan^...

    Text Solution

    |

  8. The least value of n for which (n -2) x^(2) + 8 x + n + 4 gt sin^...

    Text Solution

    |

  9. For x,y,z,t in R, if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*...

    Text Solution

    |

  10. Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10...

    Text Solution

    |

  11. The number of rational numbers in the domain of function y=sin^(-1)...

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2)....

    Text Solution

    |

  13. Match the Column I with Column II and mark the correct option from the...

    Text Solution

    |

  14. Let t(1)= (sin^(-1)x)^(sin^(-1)x),t(2)= (sin^(-1) x)^(cos^(-1)x),t(3) ...

    Text Solution

    |

  15. If cos^(-1)(4x^3-3x)=a+bcos^(-1)x" for "-1 lt x lt -1/2, then [a + b+ ...

    Text Solution

    |

  16. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  17. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0 when...

    Text Solution

    |

  18. The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2...

    Text Solution

    |

  19. Sum of infinite terms of the series cos^(-1) ( 1^(2) + 3/4) + cot^(-...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |