Home
Class 12
MATHS
The value of cot (underset(n=1)overset(2...

The value of `cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k))` is

A

`(23)/(25)`

B

`(25)/(23)`

C

`(23)/(24)`

D

`(24)/(23)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \cot \left( \sum_{n=1}^{23} \cot^{-1} \left(1 + \sum_{k=1}^{n} 2k\right) \right) \] ### Step 1: Simplify the inner summation The inner summation \( \sum_{k=1}^{n} 2k \) can be simplified using the formula for the sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] Thus, \[ \sum_{k=1}^{n} 2k = 2 \cdot \frac{n(n+1)}{2} = n(n+1) \] ### Step 2: Substitute back into the cotangent expression Now, substituting this back into our original expression gives: \[ \cot \left( \sum_{n=1}^{23} \cot^{-1} (1 + n(n+1)) \right) \] ### Step 3: Rewrite the cotangent inverse Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \), we have: \[ \cot^{-1}(1 + n(n+1)) = \tan^{-1}\left(\frac{1}{1 + n(n+1)}\right) \] ### Step 4: Sum the angles Now we need to evaluate: \[ \sum_{n=1}^{23} \tan^{-1}\left(\frac{1}{1 + n(n+1)}\right) \] Using the identity for the difference of arctangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] We can express: \[ \tan^{-1}(n) - \tan^{-1}(n+1) = \tan^{-1}\left(\frac{n - (n+1)}{1 + n(n+1)}\right) = \tan^{-1}\left(\frac{-1}{1 + n(n+1)}\right) \] ### Step 5: Apply the telescoping series Thus, we can rewrite the sum as: \[ \sum_{n=1}^{23} \left( \tan^{-1}(n) - \tan^{-1}(n+1) \right) \] This is a telescoping series, which simplifies to: \[ \tan^{-1}(1) - \tan^{-1}(24) \] ### Step 6: Evaluate the cotangent of the result Now we have: \[ \cot\left(\tan^{-1}(1) - \tan^{-1}(24)\right) \] Using the cotangent subtraction formula: \[ \cot(A - B) = \frac{\cot A \cot B + 1}{\cot A - \cot B} \] Where \( A = \tan^{-1}(1) \) (which gives \( \cot A = 1 \)) and \( B = \tan^{-1}(24) \) (which gives \( \cot B = 24 \)): \[ \cot\left(\tan^{-1}(1) - \tan^{-1}(24)\right) = \frac{1 \cdot 24 + 1}{1 - 24} = \frac{25}{-23} = -\frac{25}{23} \] ### Final Result Thus, the value of the original expression is: \[ \frac{25}{23} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The values of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum)(C_(r)+C_(S)) is

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is

If n and l are respectively the principal and azimuthal quantum numbers , then the expression for calculating the total number of electrons in any energy level is : (a) underset(l=0)overset(l=n)sum2(2l+1) (b) underset(l=1)overset(l=n)sum2(2l+1) (c) underset(l=0)overset(l=n)sum2(2l+1) (d) underset(l=0)overset(l=n-1)sum2(2l+1)

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

Let S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k) equals

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)sum b^(n), z = underset(n =0)overset(oo)sum C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in