Home
Class 12
MATHS
The value of cot(cosec^(-1)(5)/(3)+tan^(...

The value of `cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3))` is

A

`(5)/(17)`

B

`(6)/(17)`

C

`(3)/(17)`

D

`(4)/(17)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \), we can follow these steps: ### Step 1: Let \( \theta = \csc^{-1}\left(\frac{5}{3}\right) \) By definition, if \( \theta = \csc^{-1}\left(\frac{5}{3}\right) \), then: \[ \csc \theta = \frac{5}{3} \] This implies: \[ \sin \theta = \frac{3}{5} \] ### Step 2: Find \( \cos \theta \) and \( \tan \theta \) Using the Pythagorean identity: \[ \cos^2 \theta + \sin^2 \theta = 1 \] Substituting \( \sin \theta = \frac{3}{5} \): \[ \cos^2 \theta + \left(\frac{3}{5}\right)^2 = 1 \] \[ \cos^2 \theta + \frac{9}{25} = 1 \] \[ \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} \] Thus: \[ \cos \theta = \frac{4}{5} \] Now, we can find \( \tan \theta \): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 3: Rewrite the expression Now we can rewrite the original expression: \[ \cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) = \cot\left(\theta + \tan^{-1}\left(\frac{2}{3}\right)\right) \] ### Step 4: Use the cotangent addition formula Using the cotangent addition formula: \[ \cot(A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} \] Let \( A = \theta \) and \( B = \tan^{-1}\left(\frac{2}{3}\right) \). We know: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{4}{3} \] And for \( B \): \[ \tan B = \frac{2}{3} \implies \cot B = \frac{3}{2} \] ### Step 5: Substitute into the formula Now substituting into the cotangent addition formula: \[ \cot(A + B) = \frac{\frac{4}{3} \cdot \frac{3}{2} - 1}{\frac{4}{3} + \frac{3}{2}} \] Calculating the numerator: \[ \frac{4}{3} \cdot \frac{3}{2} = \frac{12}{6} = 2 \] Thus: \[ \text{Numerator} = 2 - 1 = 1 \] Calculating the denominator: \[ \frac{4}{3} + \frac{3}{2} = \frac{8}{6} + \frac{9}{6} = \frac{17}{6} \] ### Step 6: Final calculation Now we have: \[ \cot(A + B) = \frac{1}{\frac{17}{6}} = \frac{6}{17} \] ### Conclusion Thus, the value of \( \cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right) \) is: \[ \boxed{\frac{6}{17}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan(cosec^(-1)(5/3)) .

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

Find the principal value of (a) cosec^(-1) (-1) (b) cot^(-1) (-(1)/(sqrt3))

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 tan A , tan B, tan C are in

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

Find the value of ("cosec"^(2)A-1)*tan^(2)A .

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

Find the principal value of the following: (i) cosec^(-1)(2) (ii) tan^(-1) (-sqrt3) (iii) cos^(-1) (-(1)/(sqrt2))