Home
Class 12
MATHS
lim(x->1)(x^2-x*lnx+lnx-1)/(x-1)...

`lim_(x->1)(x^2-x*lnx+lnx-1)/(x-1)`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{x^2 - x \ln x + \ln x - 1}{x - 1} \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) First, we substitute \( x = 1 \) into the expression to check if it results in an indeterminate form. \[ \text{Numerator: } 1^2 - 1 \cdot \ln(1) + \ln(1) - 1 = 1 - 0 + 0 - 1 = 0 \] \[ \text{Denominator: } 1 - 1 = 0 \] Since both the numerator and denominator evaluate to 0, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule. This involves differentiating the numerator and the denominator separately. **Numerator:** \[ f(x) = x^2 - x \ln x + \ln x - 1 \] Differentiating \( f(x) \): 1. The derivative of \( x^2 \) is \( 2x \). 2. For \( -x \ln x \), we use the product rule: \[ \frac{d}{dx}(-x \ln x) = -\left(\ln x + 1\right) \] 3. The derivative of \( \ln x \) is \( \frac{1}{x} \). 4. The derivative of a constant (1) is 0. Combining these, we get: \[ f'(x) = 2x - (\ln x + 1) + \frac{1}{x} \] Thus, the derivative of the numerator is: \[ f'(x) = 2x - \ln x - 1 + \frac{1}{x} \] **Denominator:** \[ g(x) = x - 1 \] Differentiating \( g(x) \): \[ g'(x) = 1 \] ### Step 3: Apply the limit again Now we apply the limit again: \[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} (2x - \ln x - 1 + \frac{1}{x}) \] Substituting \( x = 1 \): \[ = 2(1) - \ln(1) - 1 + \frac{1}{1} = 2 - 0 - 1 + 1 = 2 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} \frac{x^2 - x \ln x + \ln x - 1}{x - 1} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(x->e) (lnx-1)/(x-e)

lim_(x->0)(1/(x^2)-1/(tan^2x))

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

lim_(x->2)(sqrt(x-1)-1)/(x-2)

lim_(x to 0) (cos 2x-1)/(cos x-1)

|{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos^(2)x):}|=a_(0)+a_(1)(x-1)+a_(2)(x-1)^(2)cdots The value of cos^(-1) (a_(1)) is:

Evaluate the following limits : Lim_(x to 1) (x^(2) - x log x + log x - 1)/(x-1)

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

Let a= lim _(x rarr 1) (x/(lnx)-1/(xln x)), b = lim _(x rarr 0) ((x^(3)-16x)/(4x+x^(2))), c= lim _(x rarr 1) ((ln(1+sinx))/x) & d = lim _(x rarr -1) ((x+1)^(3))/([sin (x+1) - (x+1)]) Then [[a,b],[c,d]] is

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. The value of lim(theta to pi//4)((sqrt(2)-cos theta-sin theta))/((4 th...

    Text Solution

    |

  2. Evaluate underset(xto0)lim(5sinx-7sin2x+3sin3x)/(x^(2)sinx).

    Text Solution

    |

  3. lim(x->1)(x^2-x*lnx+lnx-1)/(x-1)

    Text Solution

    |

  4. Evaluate: lim(xto1)(sin|||x|-2|-3|) is

    Text Solution

    |

  5. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  6. Evaluate : ("lim")(xvec2a^+)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/sqrt(x^2-4a^...

    Text Solution

    |

  7. lim(x rarr -pi) |x+pi|/sinx is

    Text Solution

    |

  8. Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer f...

    Text Solution

    |

  9. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  10. Evaluate lim(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

    Text Solution

    |

  11. Evaluate underset(xto1)lim(1-x)"tan"(pix)/(2).

    Text Solution

    |

  12. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  13. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  14. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  15. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  16. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  17. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  18. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  19. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  20. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |