Home
Class 12
MATHS
Evaluate : ("lim")(xvec2a^+)(sqrt(x-2a)+...

Evaluate : `("lim")_(xvec2a^+)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/sqrt(x^2-4a^2)`

A

`1/(sqrt(a))`

B

`1/(2sqrt(a))`

C

`(sqrt(a))/2`

D

`2sqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2a^+} \frac{\sqrt{x - 2a} + \sqrt{x} - \sqrt{2a}}{\sqrt{x^2 - 4a^2}}, \] we first substitute \(x = 2a\): 1. **Substituting \(x = 2a\)**: \[ \sqrt{2a - 2a} + \sqrt{2a} - \sqrt{2a} = 0 + \sqrt{2a} - \sqrt{2a} = 0, \] and for the denominator, \[ \sqrt{(2a)^2 - 4a^2} = \sqrt{4a^2 - 4a^2} = \sqrt{0} = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hôpital's Rule**: Since we have the indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. - **Numerator**: \[ \frac{d}{dx}(\sqrt{x - 2a} + \sqrt{x} - \sqrt{2a}) = \frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}}. \] - **Denominator**: \[ \frac{d}{dx}(\sqrt{x^2 - 4a^2}) = \frac{1}{2\sqrt{x^2 - 4a^2}} \cdot (2x) = \frac{x}{\sqrt{x^2 - 4a^2}}. \] 3. **Rewriting the limit**: Now we rewrite our limit using the derivatives: \[ \lim_{x \to 2a^+} \frac{\frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}}}{\frac{x}{\sqrt{x^2 - 4a^2}}}. \] 4. **Finding a common denominator**: The numerator can be combined: \[ \frac{1}{2\sqrt{x - 2a}} + \frac{1}{2\sqrt{x}} = \frac{\sqrt{x} + \sqrt{x - 2a}}{2\sqrt{x}\sqrt{x - 2a}}. \] Thus, the limit becomes: \[ \lim_{x \to 2a^+} \frac{\sqrt{x} + \sqrt{x - 2a}}{2\sqrt{x}\sqrt{x - 2a}} \cdot \frac{\sqrt{x^2 - 4a^2}}{x}. \] 5. **Simplifying the limit**: We know that \(x^2 - 4a^2 = (x - 2a)(x + 2a)\). Thus, \[ \sqrt{x^2 - 4a^2} = \sqrt{(x - 2a)(x + 2a)}. \] The limit now looks like: \[ \lim_{x \to 2a^+} \frac{\sqrt{x} + \sqrt{x - 2a}}{2\sqrt{x}\sqrt{x - 2a}} \cdot \frac{\sqrt{(x - 2a)(x + 2a)}}{x}. \] 6. **Canceling terms**: The \(\sqrt{x - 2a}\) in the numerator and denominator cancels: \[ \lim_{x \to 2a^+} \frac{\sqrt{x} + \sqrt{x - 2a}}{2\sqrt{x}} \cdot \frac{\sqrt{x + 2a}}{x}. \] 7. **Evaluating the limit**: Substitute \(x = 2a\): \[ \frac{\sqrt{2a} + 0}{2\sqrt{2a}} \cdot \frac{\sqrt{4a}}{2a} = \frac{\sqrt{2a}}{2\sqrt{2a}} \cdot \frac{2\sqrt{a}}{2a} = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2\sqrt{2}}. \] Thus, the final answer is: \[ \frac{1}{2\sqrt{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

Evaluate: ("lim")_(xvecoo)x^3{sqrt(x^2+sqrt(1+x^4))-xsqrt(2)}

Evaluate: ("lim")_(xvec0)(2^x-1)/(sqrt(1+x)-1)

Evaluate ("lim")_(xrarr0)(sqrt(2+x)-sqrt(2))/x

Evaluate: ("lim")_(xvecoo)(sqrt(3x^2-1)-sqrt(2x^2-1))/(4x+3)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)

Evaluate : lim_(x to 4 ) (sqrt(x)-2)/(x-4)

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

lim_(x->2)(sqrt(x-2))/(x^2-4)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate: lim(xto1)(sin|||x|-2|-3|) is

    Text Solution

    |

  2. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  3. Evaluate : ("lim")(xvec2a^+)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/sqrt(x^2-4a^...

    Text Solution

    |

  4. lim(x rarr -pi) |x+pi|/sinx is

    Text Solution

    |

  5. Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer f...

    Text Solution

    |

  6. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  7. Evaluate lim(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

    Text Solution

    |

  8. Evaluate underset(xto1)lim(1-x)"tan"(pix)/(2).

    Text Solution

    |

  9. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  10. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  11. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  12. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  13. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  14. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  15. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  16. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  17. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  18. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  19. int e^x sec e^x dx

    Text Solution

    |

  20. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |