Home
Class 12
MATHS
lim(x rarr -pi) |x+pi|/sinx is...

`lim_(x rarr -pi) |x+pi|/sinx` is

A

`-1`

B

`1`

C

`pi`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to -\pi} \frac{|x + \pi|}{\sin x} \), we need to analyze the expression step by step. ### Step 1: Determine the behavior of \( |x + \pi| \) as \( x \to -\pi \) As \( x \) approaches \(-\pi\), we can evaluate the expression \( |x + \pi| \): - For \( x < -\pi \), \( x + \pi < 0 \) and thus \( |x + \pi| = -(x + \pi) \). - For \( x > -\pi \), \( x + \pi > 0 \) and thus \( |x + \pi| = x + \pi \). Since we are interested in the limit as \( x \) approaches \(-\pi\), we will consider both the left-hand limit and the right-hand limit. ### Step 2: Calculate the left-hand limit \( \lim_{x \to -\pi^-} \frac{|x + \pi|}{\sin x} \) For \( x \to -\pi^- \): \[ |x + \pi| = -(x + \pi) \] So the limit becomes: \[ \lim_{x \to -\pi^-} \frac{-(x + \pi)}{\sin x} \] Substituting \( x = -\pi + h \) where \( h \to 0^- \): \[ \lim_{h \to 0^-} \frac{-(-\pi + h + \pi)}{\sin(-\pi + h)} = \lim_{h \to 0^-} \frac{-h}{\sin(-\pi + h)} \] Using the identity \( \sin(-\pi + h) = -\sin(h) \): \[ = \lim_{h \to 0^-} \frac{-h}{-\sin(h)} = \lim_{h \to 0^-} \frac{h}{\sin(h)} \] As \( h \to 0 \), we know that \( \frac{h}{\sin(h)} \to 1 \): \[ \lim_{x \to -\pi^-} \frac{|x + \pi|}{\sin x} = 1 \] ### Step 3: Calculate the right-hand limit \( \lim_{x \to -\pi^+} \frac{|x + \pi|}{\sin x} \) For \( x \to -\pi^+ \): \[ |x + \pi| = x + \pi \] So the limit becomes: \[ \lim_{x \to -\pi^+} \frac{x + \pi}{\sin x} \] Substituting \( x = -\pi + h \) where \( h \to 0^+ \): \[ \lim_{h \to 0^+} \frac{(-\pi + h) + \pi}{\sin(-\pi + h)} = \lim_{h \to 0^+} \frac{h}{\sin(-\pi + h)} \] Using the identity \( \sin(-\pi + h) = -\sin(h) \): \[ = \lim_{h \to 0^+} \frac{h}{-\sin(h)} = \lim_{h \to 0^+} \frac{-h}{\sin(h)} \] As \( h \to 0 \), we know that \( \frac{-h}{\sin(h)} \to -1 \): \[ \lim_{x \to -\pi^+} \frac{|x + \pi|}{\sin x} = -1 \] ### Step 4: Conclusion Since the left-hand limit is \( 1 \) and the right-hand limit is \( -1 \), we conclude: \[ \lim_{x \to -\pi} \frac{|x + \pi|}{\sin x} \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

Statement-1: lim_(xrarr oo) (cos (pi)/(x))^x=1 Statement-2: lim_(xrarr oo) -pi tan. (pi)/(x)=0

Evaluate: lim_(xrarr(pi)/(4)) (sin x -cos x)/(x-(pi)/(4))

Evaluate: lim_(xrarr(pi)/(4))(sinx-cos x)/(x-(pi)/(4))= ?

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))

The value lim_(xrarr pi//2)(sinx)^(tanx) , is

lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx equals

Value of "lim"_(x rarr 1) (1-x) "tan " (pi x)/(2) is

Evaluate : "lim"_(x rarr pi//4) (1- tanx)/(cos 2x)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  2. Evaluate : ("lim")(xvec2a^+)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/sqrt(x^2-4a^...

    Text Solution

    |

  3. lim(x rarr -pi) |x+pi|/sinx is

    Text Solution

    |

  4. Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer f...

    Text Solution

    |

  5. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  6. Evaluate lim(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

    Text Solution

    |

  7. Evaluate underset(xto1)lim(1-x)"tan"(pix)/(2).

    Text Solution

    |

  8. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  9. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  10. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  11. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  12. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  13. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  14. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  15. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  16. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  17. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  18. int e^x sec e^x dx

    Text Solution

    |

  19. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  20. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |