Home
Class 12
MATHS
Let f(x) = x(-1)^([1//x]); x != 0 where ...

Let `f(x) = x(-1)^([1//x]); x != 0` where [.] denotes greatest integer function, then `lim_(x rarr 0) f (x)` is :

A

Does not exist

B

2

C

0

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = x(-1)^{[\frac{1}{x}]} \) as \( x \) approaches 0, we will analyze the behavior of the function from both the right-hand side (as \( x \to 0^+ \)) and the left-hand side (as \( x \to 0^- \)). ### Step 1: Right-hand limit as \( x \to 0^+ \) We start by evaluating the right-hand limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x(-1)^{[\frac{1}{x}]} \] As \( x \) approaches 0 from the right, \( \frac{1}{x} \) approaches \( +\infty \). The greatest integer function \( [\frac{1}{x}] \) will take on increasingly large integer values. Specifically, it will be even or odd depending on the specific value of \( x \). ### Step 2: Behavior of \( (-1)^{[\frac{1}{x}]} \) The term \( (-1)^{[\frac{1}{x}]} \) oscillates between 1 and -1 depending on whether \( [\frac{1}{x}] \) is even or odd. However, since \( x \) is approaching 0, the value of \( x \) itself will dominate the product: \[ \lim_{x \to 0^+} x(-1)^{[\frac{1}{x}]} = \lim_{x \to 0^+} x \cdot \text{(oscillating term)} \] ### Step 3: Limit evaluation Regardless of whether \( (-1)^{[\frac{1}{x}]} \) is 1 or -1, the product \( x \cdot (-1)^{[\frac{1}{x}]} \) will approach 0 because \( x \) approaches 0: \[ \lim_{x \to 0^+} f(x) = 0 \] ### Step 4: Left-hand limit as \( x \to 0^- \) Now, we evaluate the left-hand limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x(-1)^{[\frac{1}{x}]} \] As \( x \) approaches 0 from the left, \( \frac{1}{x} \) approaches \( -\infty \). The greatest integer function \( [\frac{1}{x}] \) will also take on increasingly large negative integer values, which means it will still oscillate between even and odd. ### Step 5: Behavior of \( (-1)^{[\frac{1}{x}]} \) Similar to the right-hand limit, \( (-1)^{[\frac{1}{x}]} \) will oscillate between 1 and -1. Therefore, we have: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x(-1)^{[\frac{1}{x}]} = 0 \] ### Step 6: Conclusion Since both the right-hand limit and left-hand limit as \( x \) approaches 0 are equal: \[ \lim_{x \to 0^+} f(x) = 0 \quad \text{and} \quad \lim_{x \to 0^-} f(x) = 0 \] Thus, we conclude that: \[ \lim_{x \to 0} f(x) = 0 \] ### Final Answer The limit is \( \boxed{0} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate : ("lim")(xvec2a^+)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/sqrt(x^2-4a^...

    Text Solution

    |

  2. lim(x rarr -pi) |x+pi|/sinx is

    Text Solution

    |

  3. Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer f...

    Text Solution

    |

  4. Evaluate underset(xto-1^(+))lim(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

    Text Solution

    |

  5. Evaluate lim(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

    Text Solution

    |

  6. Evaluate underset(xto1)lim(1-x)"tan"(pix)/(2).

    Text Solution

    |

  7. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  8. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  9. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  10. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  11. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  12. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  13. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  14. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  15. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  16. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  17. int e^x sec e^x dx

    Text Solution

    |

  18. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  19. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  20. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |