Home
Class 12
MATHS
Statement 1: lim(xto0)[(sinx)/x]=0 Sta...

Statement 1: `lim_(xto0)[(sinx)/x]=0`
Statement 2: `lim_(xto0)[(sinx)/x]=1`

A

Statement-1 is True, Statement -2 is True, Statement -2 is True and Statement -2 is a correct explanation for statement -1.

B

Statement -1 is True, Statement -2 is True and Statement -2 is Not is a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the two statements regarding the limit of \(\frac{\sin x}{x}\) as \(x\) approaches 0. ### Step-by-Step Solution: **Step 1: Understand the limit.** We need to evaluate: \[ \lim_{x \to 0} \frac{\sin x}{x} \] **Hint:** Recall that this limit is a well-known limit in calculus. --- **Step 2: Apply L'Hôpital's Rule.** Since both the numerator and denominator approach 0 as \(x\) approaches 0, we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} \] **Hint:** L'Hôpital's Rule is used when you encounter the indeterminate form \(\frac{0}{0}\). --- **Step 3: Evaluate the limit using L'Hôpital's Rule.** Now, substituting \(x = 0\) into the derivative: \[ \lim_{x \to 0} \cos x = \cos(0) = 1 \] **Hint:** Remember that \(\cos(0) = 1\). --- **Step 4: Conclude the evaluation.** Thus, we have: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] **Hint:** This confirms that the limit approaches 1, not 0. --- **Step 5: Analyze the statements.** - Statement 1: \(\lim_{x \to 0} \frac{\sin x}{x} = 0\) (False) - Statement 2: \(\lim_{x \to 0} \frac{\sin x}{x} = 1\) (True) **Hint:** Compare the results of the limit with the statements given. --- ### Final Conclusion: The correct statement is Statement 2, which is true, while Statement 1 is false.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)|x|^(sinx)

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

lim_(xto0)(|sin x|)/x is equal to :

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0^(+))(sinx)^(x)

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0)(cosecx)^(x) .

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate lim(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

    Text Solution

    |

  2. Evaluate underset(xto1)lim(1-x)"tan"(pix)/(2).

    Text Solution

    |

  3. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  4. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  5. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  6. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  7. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  8. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  9. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  10. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  11. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  12. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  13. int e^x sec e^x dx

    Text Solution

    |

  14. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  15. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  16. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  17. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  18. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  19. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  20. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |