Home
Class 12
MATHS
Statement 1: If f(x)=2/(pi) cot^(-1)((3x...

Statement 1: If `f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2)))`, then `lim_(xto1^(-))f(x)=0` and `lim_(xto2^(-))f(x)=2`
Statement 2: `lim_(xtooo)cot^(-1)x=0` and `lim_(xto -oo)cot^(-1)x=pi`

A

Statement-1 is True, Statement -2 is True, Statement -2 is True and Statement -2 is a correct explanation for statement -1.

B

Statement -1 is True, Statement -2 is True and Statement -2 is Not is a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Step 1: Analyze Statement 1 We have the function: \[ f(x) = \frac{2}{\pi} \cot^{-1}\left(\frac{3x^2 + 1}{(x-1)(x-2)}\right) \] #### Step 1.1: Find \(\lim_{x \to 1^-} f(x)\) As \(x\) approaches \(1\) from the left: - The expression \((x-1)(x-2)\) approaches \(0\) (specifically, it approaches \(0\) from the negative side since \(x < 1\)). - Therefore, \(\frac{3x^2 + 1}{(x-1)(x-2)}\) approaches \(-\infty\). Now, we know: \[ \cot^{-1}(-\infty) = \pi \] Thus, \[ \lim_{x \to 1^-} f(x) = \frac{2}{\pi} \cdot \pi = 2 \] #### Step 1.2: Find \(\lim_{x \to 2^-} f(x)\) As \(x\) approaches \(2\) from the left: - The expression \((x-1)(x-2)\) again approaches \(0\) (specifically, it approaches \(0\) from the negative side). - Therefore, \(\frac{3x^2 + 1}{(x-1)(x-2)}\) approaches \(-\infty\). Thus, \[ \lim_{x \to 2^-} f(x) = \frac{2}{\pi} \cdot \pi = 2 \] ### Conclusion for Statement 1: - \(\lim_{x \to 1^-} f(x) = 2\) (not 0 as claimed) - \(\lim_{x \to 2^-} f(x) = 2\) (correct) Thus, Statement 1 is **false**. ### Step 2: Analyze Statement 2 #### Step 2.1: Find \(\lim_{x \to \infty} \cot^{-1}(x)\) As \(x\) approaches \(+\infty\): \[ \cot^{-1}(x) \to 0 \] #### Step 2.2: Find \(\lim_{x \to -\infty} \cot^{-1}(x)\) As \(x\) approaches \(-\infty\): \[ \cot^{-1}(x) \to \pi \] ### Conclusion for Statement 2: Both limits are correct: - \(\lim_{x \to \infty} \cot^{-1}(x) = 0\) - \(\lim_{x \to -\infty} \cot^{-1}(x) = \pi\) Thus, Statement 2 is **true**. ### Final Conclusion: - Statement 1 is false. - Statement 2 is true.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Find lim_(xto0)(cot^(-1)(1/x))/x

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

lim_(xto oo)(x/(1+x))^(x) is

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1/2+)f'(x)=a and lim_(xto1/2-)f'(x)=b then a + b+ 3 is equal to ____

If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxlt3):} then value of lim_(xto1)f(x)+lim_(xto2^(+))f(x) is

If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim_(xto oo)f(x) is

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

Statement 1: lim_(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)))=lim_(xto oo)1/(x^(2))+………….+lim_(xto oo)x/(x^(2))=0 Statement 2: lim_(xtoa)(f_(1)(x)+f_(2)(x)+………..+f_(n)(x))=lim_(xtoa)f_(1)(x)+………….+lim_(xtoa)f_(n)(x) provided each limit exists individually.

lim_(xto0)((e^(x)-1)/x)^(1//x)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate underset(xto1)lim(1-x)"tan"(pix)/(2).

    Text Solution

    |

  2. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  3. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  4. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  5. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  6. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  7. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  8. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  9. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  10. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  11. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  12. int e^x sec e^x dx

    Text Solution

    |

  13. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  14. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  15. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  16. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  17. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  18. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  19. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  20. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |