Home
Class 12
MATHS
Statement 1: lim(xto oo)(1/(x^(2))+2/(x^...

Statement 1: `lim_(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)))=lim_(xto oo)1/(x^(2))+………….+lim_(xto oo)x/(x^(2))=0`
Statement 2: `lim_(xtoa)(f_(1)(x)+f_(2)(x)+………..+f_(n)(x))=lim_(xtoa)f_(1)(x)+………….+lim_(xtoa)f_(n)(x)` provided each limit exists individually.

A

Statement-1 is True, Statement -2 is True, Statement -2 is True and Statement -2 is a correct explanation for statement -1.

B

Statement -1 is True, Statement -2 is True and Statement -2 is Not is a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze both statements given in the question. ### Statement 1: We need to evaluate the limit: \[ \lim_{x \to \infty} \left( \frac{1}{x^2} + \frac{2}{x^2} + \frac{3}{x^2} + \ldots + \frac{x}{x^2} \right) \] This can be rewritten as: \[ \lim_{x \to \infty} \left( \frac{1 + 2 + 3 + \ldots + x}{x^2} \right) \] The sum of the first \( n \) natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] So, for \( n = x \): \[ 1 + 2 + 3 + \ldots + x = \frac{x(x + 1)}{2} \] Substituting this back into our limit, we have: \[ \lim_{x \to \infty} \frac{\frac{x(x + 1)}{2}}{x^2} \] This simplifies to: \[ \lim_{x \to \infty} \frac{x(x + 1)}{2x^2} = \lim_{x \to \infty} \frac{x + 1}{2x} = \lim_{x \to \infty} \frac{1 + \frac{1}{x}}{2} \] As \( x \to \infty \), \( \frac{1}{x} \to 0 \): \[ \lim_{x \to \infty} \frac{1 + \frac{1}{x}}{2} = \frac{1 + 0}{2} = \frac{1}{2} \] Thus, the limit evaluates to: \[ \frac{1}{2} \] ### Statement 2: The second statement states: \[ \lim_{x \to a} (f_1(x) + f_2(x) + \ldots + f_n(x)) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \ldots + \lim_{x \to a} f_n(x) \] provided each limit exists individually. This is a well-known property of limits, known as the linearity of limits. Therefore, if each individual limit exists, the limit of the sum is equal to the sum of the limits. ### Conclusion: - Statement 1 is **incorrect**; the limit evaluates to \( \frac{1}{2} \) not \( 0 \). - Statement 2 is **correct**. ### Final Answer: - Statement 1: **False** - Statement 2: **True**
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xto oo)(x/(1+x))^(x) is

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate: lim_(xto oo)(2x^(2)-2x-sin^(2)x)/(3x^(2)-4x+cos^(2)x)

lim_(xto oo)(ln(x^(2)+5x)-2ln(cx+1)=-2 then

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Statement 1: lim(xto0)[(sinx)/x]=0 Statement 2: lim(xto0)[(sinx)/x]=...

    Text Solution

    |

  2. Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))), then li...

    Text Solution

    |

  3. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  4. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  5. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  6. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  7. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  8. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  9. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  10. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  11. int e^x sec e^x dx

    Text Solution

    |

  12. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  13. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  14. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  15. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  16. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  17. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  18. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  19. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  20. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |