Home
Class 12
MATHS
If [ ] denotes the greatest integer fun...

If [ ] denotes the greatest integer function, `lim_(x to(pi)/2)(5 sin [cos x])/([cos x]+2)` is

A

0

B

1

C

`oo`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{5 \sin [\cos x]}{[\cos x] + 2} \), where \([\cdot]\) denotes the greatest integer function, we will analyze the behavior of \(\cos x\) as \(x\) approaches \(\frac{\pi}{2}\) from both sides. ### Step-by-Step Solution: 1. **Understand the behavior of \(\cos x\)**: - As \(x\) approaches \(\frac{\pi}{2}\), \(\cos x\) approaches \(0\). - Specifically, for \(x\) slightly less than \(\frac{\pi}{2}\) (i.e., \(x \to \frac{\pi}{2}^-\)), \(\cos x\) is positive and approaches \(0\). - For \(x\) slightly more than \(\frac{\pi}{2}\) (i.e., \(x \to \frac{\pi}{2}^+\)), \(\cos x\) is negative and also approaches \(0\). 2. **Calculate the left-hand limit**: - For \(x \to \frac{\pi}{2}^-\): - \(\cos x\) is in the interval \((0, 1)\). - Therefore, \([\cos x] = 0\). - The limit becomes: \[ \lim_{x \to \frac{\pi}{2}^-} \frac{5 \sin [\cos x]}{[\cos x] + 2} = \lim_{x \to \frac{\pi}{2}^-} \frac{5 \sin 0}{0 + 2} = \frac{5 \cdot 0}{2} = 0. \] 3. **Calculate the right-hand limit**: - For \(x \to \frac{\pi}{2}^+\): - \(\cos x\) is in the interval \((-1, 0)\). - Therefore, \([\cos x] = -1\). - The limit becomes: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{5 \sin [\cos x]}{[\cos x] + 2} = \lim_{x \to \frac{\pi}{2}^+} \frac{5 \sin (-1)}{-1 + 2} = \frac{5 \sin (-1)}{1} = 5 \sin (-1). \] 4. **Compare the left-hand and right-hand limits**: - The left-hand limit is \(0\). - The right-hand limit is \(5 \sin (-1)\), which is not equal to \(0\) (since \(\sin(-1) \neq 0\)). - Therefore, the left-hand limit does not equal the right-hand limit. 5. **Conclusion**: - Since the left-hand limit and the right-hand limit are not equal, the limit does not exist. - Thus, we conclude that: \[ \lim_{x \to \frac{\pi}{2}} \frac{5 \sin [\cos x]}{[\cos x] + 2} \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to

If [.] denotes the greatest integer function then lim_(x→0) ​ [x^2/(tanx.sinx)] =

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Consider a function f (x) in [0,2pi] defined as : f(x)=[{:([sinx]+ [cos x],,, 0 le x le pi),( [sin x] -[cos x],,, pi lt x le 2pi):} where [.] denotes greatest integer function then. lim _(x to ((3pi)/(2))^+), f (x) equals

If [.] denotes the greatest integer function then lim_(x->oo)([x]+[2x]+[3x]+[4x])/x^2 is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest integer function, then f'(5sqrt((pi)/(2))) is equal to

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

If [.] denotes the greatest intger function, then lim_(xrarr0) (tan([-2pi^2]x^2)-x^2tan[-2pi^2])/(sin^2x) is equal to

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Statement 1: lim(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)...

    Text Solution

    |

  2. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  3. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  4. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  5. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  6. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  7. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  8. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  9. int e^x sec e^x dx

    Text Solution

    |

  10. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  11. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  12. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  13. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  14. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  15. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  16. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  17. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  18. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  19. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  20. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |