Home
Class 12
MATHS
lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt...

`lim_(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))`

A

`sqrt(2)log3`

B

`8sqrt(20(log3)^(2)`

C

`8sqrt(2)(log3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{2 \cdot 7^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, \] we will follow these steps: ### Step 1: Simplify the Numerator We can rewrite the numerator \(2 \cdot 7^x - 9^x - 3^x + 1\) by factoring out \(9^x\) from the first two terms: \[ 2 \cdot 7^x - 9^x = 9^x \left(\frac{2 \cdot 7^x}{9^x} - 1\right) = 9^x \left(2 \left(\frac{7}{9}\right)^x - 1\right). \] Now, the numerator becomes: \[ 9^x \left(2 \left(\frac{7}{9}\right)^x - 1 - \frac{3^x - 1}{9^x}\right). \] ### Step 2: Simplify the Denominator Next, we simplify the denominator \(\sqrt{2} - \sqrt{1 + \cos x}\). We can rationalize it: \[ \sqrt{2} - \sqrt{1 + \cos x} = \frac{(\sqrt{2} - \sqrt{1 + \cos x})(\sqrt{2} + \sqrt{1 + \cos x})}{\sqrt{2} + \sqrt{1 + \cos x}} = \frac{2 - (1 + \cos x)}{\sqrt{2} + \sqrt{1 + \cos x}} = \frac{1 - \cos x}{\sqrt{2} + \sqrt{1 + \cos x}}. \] ### Step 3: Substitute Back into the Limit Now we can substitute back into the limit: \[ \lim_{x \to 0} \frac{9^x \left(2 \left(\frac{7}{9}\right)^x - 1 - \frac{3^x - 1}{9^x}\right)}{\frac{1 - \cos x}{\sqrt{2} + \sqrt{1 + \cos x}}}. \] ### Step 4: Apply L'Hôpital's Rule As \(x \to 0\), both the numerator and denominator approach \(0\). We can apply L'Hôpital's Rule: 1. Differentiate the numerator and denominator. 2. Evaluate the limit again. ### Step 5: Evaluate the Limit Using the known limits: - \(\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a\) - \(\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}\) We can evaluate the limit: 1. The term \(2 \left(\frac{7}{9}\right)^x - 1\) approaches \(2 \cdot 1 - 1 = 1\). 2. The term \(9^x\) approaches \(1\). 3. The denominator approaches \(\frac{1}{2}\). Thus, we have: \[ \lim_{x \to 0} \frac{9^x \cdot 1}{\frac{1 - \cos x}{\sqrt{2} + \sqrt{1 + \cos x}}} = \frac{1}{\frac{1}{2}} = 2. \] ### Final Answer The limit evaluates to: \[ \lim_{x \to 0} \frac{2 \cdot 7^x - 9^x - 3^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} = 8 \sqrt{2} \cdot \log 3. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim _(x -> 0) (3^x-1)/(sqrt(2+x)-sqrt2)

If f(x)={(36^x-9^x-4^x+1)/(sqrt(2)-sqrt(1+cosx)),x!=0 \ \ \ \k ,x=0 is continuous at x=0, then k equal to

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

Evaluate: lim_(x->a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)),(a!=0)dot

Evaluate: lim_(x->a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)),(a!=0)dot

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)

Evaluate: ("lim")_(xvec0)((1-3^x-4^x+12^x))/(sqrt((2cosx+7))-3)

lim_(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))

lim_(x->2)(sqrt(x-1)-1)/(x-2)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If [ ] denotes the greatest integer function, lim(x to(pi)/2)(5 sin ...

    Text Solution

    |

  2. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  3. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  4. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  5. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  6. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  7. int e^x sec e^x dx

    Text Solution

    |

  8. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  9. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  11. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  12. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  13. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  14. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  15. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  16. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  17. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  18. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  19. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  20. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |