Home
Class 12
MATHS
Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"co...

Evaluate: `lim_(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-log4)/((x+1)^(2))`

A

`-1/6`

B

`-1/12`

C

`-1/4`

D

`-1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to -1} \frac{\log(x^2 + 2x + 5) + \cos\left(\frac{5(x+1)}{6}\right) - \cos\left(\frac{x+1}{6}\right) - \log 4}{(x+1)^2} \] we will follow these steps: ### Step 1: Substitute \( x + 1 = h \) Let \( h = x + 1 \). As \( x \to -1 \), \( h \to 0 \). Therefore, we can rewrite the limit in terms of \( h \): \[ \lim_{h \to 0} \frac{\log((h-1)^2 + 2(h-1) + 5) + \cos\left(\frac{5h}{6}\right) - \cos\left(\frac{h}{6}\right) - \log 4}{h^2} \] ### Step 2: Simplify the expression inside the logarithm Now simplify \( (h-1)^2 + 2(h-1) + 5 \): \[ (h-1)^2 + 2(h-1) + 5 = h^2 - 2h + 1 + 2h - 2 + 5 = h^2 + 4 \] So we have: \[ \lim_{h \to 0} \frac{\log(h^2 + 4) + \cos\left(\frac{5h}{6}\right) - \cos\left(\frac{h}{6}\right) - \log 4}{h^2} \] ### Step 3: Rewrite the limit This becomes: \[ \lim_{h \to 0} \frac{\log\left(\frac{h^2 + 4}{4}\right) + \cos\left(\frac{5h}{6}\right) - \cos\left(\frac{h}{6}\right)}{h^2} \] ### Step 4: Evaluate the limit As \( h \to 0 \): - \( \log\left(\frac{h^2 + 4}{4}\right) = \log\left(1 + \frac{h^2}{4}\right) \) which approaches \( \frac{h^2}{4} \) (using the approximation \( \log(1+x) \approx x \) for small \( x \)). - \( \cos\left(\frac{5h}{6}\right) \) approaches \( 1 \) and \( \cos\left(\frac{h}{6}\right) \) also approaches \( 1 \). Thus, \( \cos\left(\frac{5h}{6}\right) - \cos\left(\frac{h}{6}\right) \) approaches \( 0 \). Using Taylor expansion: \[ \cos\left(\frac{5h}{6}\right) \approx 1 - \frac{(5h/6)^2}{2} = 1 - \frac{25h^2}{72} \] \[ \cos\left(\frac{h}{6}\right) \approx 1 - \frac{(h/6)^2}{2} = 1 - \frac{h^2}{72} \] Thus, \[ \cos\left(\frac{5h}{6}\right) - \cos\left(\frac{h}{6}\right) \approx -\frac{25h^2}{72} + \frac{h^2}{72} = -\frac{24h^2}{72} = -\frac{h^2}{3} \] ### Step 5: Substitute back into the limit Now we have: \[ \lim_{h \to 0} \frac{\frac{h^2}{4} - \frac{h^2}{3}}{h^2} = \lim_{h \to 0} \left(\frac{1}{4} - \frac{1}{3}\right) = \frac{3 - 4}{12} = -\frac{1}{12} \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{-\frac{1}{12}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(xto a)(log{1+(x-a)})/((x-a))

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate x lim_(xto2) (x-2)/(log_(a)(x-1)).

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

Evaluate lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. ("lim")(xvec0)(x^asin^b x)/(sin(x^c)),w h e r ea , b , c in R ~{0},e ...

    Text Solution

    |

  2. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  3. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  4. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  5. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  6. int e^x sec e^x dx

    Text Solution

    |

  7. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  8. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  9. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  10. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  11. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  12. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  13. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  14. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  15. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  16. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  17. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  18. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  19. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  20. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |