Home
Class 12
MATHS
The value of lim(xto2a)(sqrt(x-2a)+sqrt(...

The value of `lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))`is

A

`4/(sqrt(a))`

B

`2/(sqrt(a))`

C

`1/(sqrt(a))`

D

`1/(2sqrt(a))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 2a} \frac{\sqrt{x - 2a} + \sqrt{x} - \sqrt{2a}}{\sqrt{x^2 - 4a^2}}, \] we will follow these steps: ### Step 1: Substitute the limit First, we substitute \(x = 2a\) into the expression to check if we get an indeterminate form: \[ \sqrt{2a - 2a} + \sqrt{2a} - \sqrt{2a} = 0 + \sqrt{2a} - \sqrt{2a} = 0, \] and for the denominator: \[ \sqrt{(2a)^2 - 4a^2} = \sqrt{4a^2 - 4a^2} = 0. \] Since we have a \( \frac{0}{0} \) indeterminate form, we need to simplify the expression. **Hint:** Check for indeterminate forms by substituting the limit value. ### Step 2: Simplify the numerator We will rationalize the numerator. The term \(\sqrt{x} - \sqrt{2a}\) can be rationalized: \[ \sqrt{x} - \sqrt{2a} = \frac{(\sqrt{x} - \sqrt{2a})(\sqrt{x} + \sqrt{2a})}{\sqrt{x} + \sqrt{2a}} = \frac{x - 2a}{\sqrt{x} + \sqrt{2a}}. \] Thus, we can rewrite the limit as: \[ \lim_{x \to 2a} \frac{\sqrt{x - 2a} + \frac{x - 2a}{\sqrt{x} + \sqrt{2a}}}{\sqrt{x^2 - 4a^2}}. \] **Hint:** Use rationalization to simplify expressions involving square roots. ### Step 3: Combine the terms in the numerator Now, we can combine the terms in the numerator: \[ \sqrt{x - 2a} + \frac{x - 2a}{\sqrt{x} + \sqrt{2a}} = \frac{(\sqrt{x - 2a})(\sqrt{x} + \sqrt{2a}) + (x - 2a)}{\sqrt{x} + \sqrt{2a}}. \] This gives us: \[ \lim_{x \to 2a} \frac{(\sqrt{x - 2a})(\sqrt{x} + \sqrt{2a}) + (x - 2a)}{(\sqrt{x} + \sqrt{2a}) \sqrt{x^2 - 4a^2}}. \] **Hint:** Combine fractions when possible to simplify the limit. ### Step 4: Simplify the denominator The denominator can be simplified using the difference of squares: \[ \sqrt{x^2 - 4a^2} = \sqrt{(x - 2a)(x + 2a)}. \] Thus, we rewrite the limit as: \[ \lim_{x \to 2a} \frac{(\sqrt{x - 2a})(\sqrt{x} + \sqrt{2a}) + (x - 2a)}{(\sqrt{x} + \sqrt{2a}) \sqrt{(x - 2a)(x + 2a)}}. \] **Hint:** Use algebraic identities to simplify expressions involving square roots. ### Step 5: Cancel common factors Now, we can see that \((x - 2a)\) appears in both the numerator and denominator. We can cancel \(\sqrt{x - 2a}\): \[ \lim_{x \to 2a} \frac{(\sqrt{x} + \sqrt{2a}) + 1}{\sqrt{x + 2a}}. \] ### Step 6: Substitute again Now we substitute \(x = 2a\): \[ \frac{(\sqrt{2a} + \sqrt{2a}) + 1}{\sqrt{4a}} = \frac{2\sqrt{2a} + 1}{2\sqrt{a}}. \] ### Step 7: Final simplification This simplifies to: \[ \frac{2\sqrt{2a} + 1}{2\sqrt{a}} = \frac{2\sqrt{2} + \frac{1}{\sqrt{a}}}{2}. \] Thus, the limit evaluates to: \[ \frac{1}{2} \cdot \left(2\sqrt{2} + 1\right). \] **Final Answer:** The value of the limit is \( \frac{1}{2} \cdot (2\sqrt{2} + 1) \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ("lim")_(xvec2a^+)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/sqrt(x^2-4a^2)

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

lim_(x->2)(sqrt(x-2))/(x^2-4)

Evaluate : lim_(x to 4 ) (sqrt(x)-2)/(x-4)

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

lim_(x rarr2)(5)/(sqrt(2)-sqrt(x))

The value of lim_(xrarrb)(sqrt(x-a)-sqrt(b-a))/(x^2-b^2) , for bgt a ,is

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. lim(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

    Text Solution

    |

  2. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  3. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  4. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  5. int e^x sec e^x dx

    Text Solution

    |

  6. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  7. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  8. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  9. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  10. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  11. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  12. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  13. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  14. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  15. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  16. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  17. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  18. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  19. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  20. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |