Home
Class 12
MATHS
Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)...

Evaluate: `lim_(xto0)(log(1-3x))/(5^(x)-1)`

A

`(-3)/(log5)`

B

`(-1)/(log5)`

C

`3/(log5)`

D

`1/(log5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\log(1 - 3x)}{5^x - 1}, \] we first check the form of the limit by substituting \( x = 0 \): - The numerator becomes \( \log(1 - 3 \cdot 0) = \log(1) = 0 \). - The denominator becomes \( 5^0 - 1 = 1 - 1 = 0 \). Since we have a \( \frac{0}{0} \) indeterminate form, we can apply L'Hôpital's Rule, which states that if the limit results in an indeterminate form, we can take the derivative of the numerator and the derivative of the denominator separately. ### Step 1: Differentiate the numerator and denominator 1. **Numerator**: \[ \frac{d}{dx}[\log(1 - 3x)] = \frac{-3}{1 - 3x} \] (using the chain rule). 2. **Denominator**: \[ \frac{d}{dx}[5^x - 1] = 5^x \log(5) \] (using the derivative of \( a^x \) which is \( a^x \log(a) \)). ### Step 2: Apply L'Hôpital's Rule Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to 0} \frac{\log(1 - 3x)}{5^x - 1} = \lim_{x \to 0} \frac{-3/(1 - 3x)}{5^x \log(5)}. \] ### Step 3: Substitute \( x = 0 \) Now we substitute \( x = 0 \) into the limit: - The numerator becomes: \[ -\frac{3}{1 - 3 \cdot 0} = -\frac{3}{1} = -3. \] - The denominator becomes: \[ 5^0 \log(5) = 1 \cdot \log(5) = \log(5). \] ### Step 4: Final Calculation Thus, we have: \[ \lim_{x \to 0} \frac{-3}{\log(5)} = -\frac{3}{\log(5)}. \] ### Conclusion The final answer is: \[ -\frac{3}{\log(5)}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto a)(log{1+(x-a)})/((x-a))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate: lim(xto-1)(log(x^(2)+2x+5)+"cos5"((x+1))/6-"cos"((x+1))/6-lo...

    Text Solution

    |

  2. The value of lim(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2))i...

    Text Solution

    |

  3. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  4. int e^x sec e^x dx

    Text Solution

    |

  5. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  6. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  7. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  8. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  9. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  10. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  11. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  12. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  13. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  14. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  15. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  16. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  17. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  18. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  19. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  20. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |