Home
Class 12
MATHS
Evaluate: lim(xto0)(log(e^(x)-x))/(1-cos...

Evaluate: `lim_(xto0)(log(e^(x)-x))/(1-cosx)`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\log(e^x - x)}{1 - \cos x}, \] we begin by substituting \( x = 0 \) into the expression: 1. **Substitution**: \[ \text{Numerator: } \log(e^0 - 0) = \log(1) = 0, \] \[ \text{Denominator: } 1 - \cos(0) = 1 - 1 = 0. \] This results in the indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hospital's Rule**: Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hospital's Rule, which states that we can take the derivative of the numerator and the denominator separately. - **Differentiate the numerator**: \[ \frac{d}{dx}[\log(e^x - x)] = \frac{1}{e^x - x} \cdot \frac{d}{dx}(e^x - x) = \frac{1}{e^x - x}(e^x - 1). \] - **Differentiate the denominator**: \[ \frac{d}{dx}[1 - \cos x] = \sin x. \] Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\frac{e^x - 1}{e^x - x}}{\sin x}. \] 3. **Substituting Again**: Now, we substitute \( x = 0 \) again: - The numerator becomes: \[ e^0 - 1 = 0, \] and the denominator becomes: \[ \sin(0) = 0. \] This again results in the indeterminate form \( \frac{0}{0} \). 4. **Applying L'Hospital's Rule Again**: We apply L'Hospital's Rule a second time: - **Differentiate the numerator**: \[ \frac{d}{dx}[e^x - 1] = e^x. \] - **Differentiate the denominator**: \[ \frac{d}{dx}[\sin x] = \cos x. \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{e^x}{\cos x}. \] 5. **Final Substitution**: Substitute \( x = 0 \): \[ \frac{e^0}{\cos(0)} = \frac{1}{1} = 1. \] Thus, the value of the limit is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)

    Text Solution

    |

  2. int e^x sec e^x dx

    Text Solution

    |

  3. Evaluate: lim(xto0)(log(e^(x)-x))/(1-cosx)

    Text Solution

    |

  4. Evaluate: (lim)(x->e)(logx-1)/(x-e)

    Text Solution

    |

  5. Evaluate: ("lim")(xvec0)((a^x+b^x+c^x)/3);(a , b , c >0)

    Text Solution

    |

  6. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  7. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  8. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  9. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  10. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  11. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  12. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  13. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  14. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  15. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  16. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  17. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  18. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  19. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  20. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |