Home
Class 12
MATHS
If x gt0 and g is bounded function then ...

If `x gt0` and g is bounded function then `lim_(ntooo)(f(x)e^(nx)+g(x))/(e^(nx)+1)`

A

`f(x)`

B

`g(x)`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \frac{f(x)e^{nx} + g(x)}{e^{nx} + 1} \] where \( x > 0 \) and \( g(x) \) is a bounded function. ### Step-by-step Solution: 1. **Identify the Form of the Limit**: As \( n \to \infty \), both \( e^{nx} \) terms in the numerator and denominator grow very large. Therefore, we can see that we have an indeterminate form of type \( \frac{\infty}{\infty} \). 2. **Factor Out \( e^{nx} \)**: We can simplify the expression by factoring \( e^{nx} \) out of both the numerator and the denominator: \[ = \lim_{n \to \infty} \frac{e^{nx}(f(x) + \frac{g(x)}{e^{nx}})}{e^{nx}(1 + \frac{1}{e^{nx}})} \] 3. **Cancel \( e^{nx} \)**: Since \( e^{nx} \) is common in both the numerator and denominator, we can cancel it (as long as \( e^{nx} \neq 0 \), which it isn't for \( x > 0 \)): \[ = \lim_{n \to \infty} \frac{f(x) + \frac{g(x)}{e^{nx}}}{1 + \frac{1}{e^{nx}}} \] 4. **Evaluate the Limit**: As \( n \to \infty \), \( \frac{g(x)}{e^{nx}} \) approaches 0 because \( g(x) \) is bounded (let's say \( |g(x)| \leq M \) for some constant \( M \)), and \( e^{nx} \) grows without bound. Similarly, \( \frac{1}{e^{nx}} \) also approaches 0. Thus, we have: \[ = \frac{f(x) + 0}{1 + 0} = f(x) \] 5. **Conclusion**: Therefore, the limit is: \[ \lim_{n \to \infty} \frac{f(x)e^{nx} + g(x)}{e^{nx} + 1} = f(x) \] ### Final Answer: The limit is \( f(x) \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let function f be defined as f:R^(+)toR^(+) and function g is defined as g:R^(+)toR^(+) . Functions f and g are continuous in their domain. Suppose, the function h(x)=lim_(ntooo)(x^(n)f(x)+x^(2))/(x^(n)+g(x)), x gt0 . If h(x) is continuous in its domain,then f(1).g(1) is equal to (a) 2 (b) 1 (c) 1/2 (d) 0

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

Let f and g be differentiable functions such that: xg(f(x))f\'(g(x))g\'(x)=f(g(x))g\'(f(x))f\'(x) AA x in R Also, f(x)gt0 and g(x)gt0 AA x in R int_0^xf(g(t))dt=1-e^(-2x)/2, AA x in R and g(f(0))=1, h(x)=g(f(x))/f(g(x)) AA x in R Now answer the question: f(g(0))+g(f(0))= (A) 1 (B) 2 (C) 3 (D) 4

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Evaluate underset(xto2)limsin(e^(x-2)-1)/(log(x-1))

    Text Solution

    |

  2. The value of lim(xto0)(x cosx-log(1+x))/(x^(2)) is

    Text Solution

    |

  3. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  4. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  5. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  6. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  7. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  8. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  9. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  10. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  11. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  12. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  13. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  14. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  15. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  16. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  17. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  18. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  19. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  20. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |