Home
Class 12
MATHS
If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 ...

If `lim_(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2` then values of a and b are

A

`a=1,b=2`

B

`a=2,b=1`

C

`a=1,b epsilon R`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^2 \] ### Step-by-Step Solution: 1. **Rewrite the Limit**: We start by rewriting the limit expression: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} \] 2. **Identify the Form**: As \(x\) approaches infinity, \(\frac{a}{x}\) approaches 0 and \(\frac{b}{x^2}\) also approaches 0. Thus, we can express the limit in the form of \(1 + u\) where \(u\) approaches 0: \[ 1 + \frac{a}{x} + \frac{b}{x^2} \approx 1 + \frac{a}{x} \] for large \(x\). 3. **Use the Exponential Limit**: We can use the limit property: \[ \lim_{x \to \infty} \left(1 + \frac{u}{n}\right)^{n} = e^u \] Here, we can set \(u = 2a\) and \(n = x\). Thus, we rewrite our limit: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = \lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^{2x} \cdot \left(1 + \frac{b}{x^2}\right)^{2x} \] 4. **Evaluate Each Part**: The first part: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^{2x} = e^{2a} \] The second part: \[ \lim_{x \to \infty} \left(1 + \frac{b}{x^2}\right)^{2x} \to 1 \text{ (since } \frac{b}{x^2} \to 0 \text{)} \] 5. **Combine the Results**: Therefore, we have: \[ \lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2}\right)^{2x} = e^{2a} \] 6. **Set the Equation**: Setting this equal to \(e^2\): \[ e^{2a} = e^2 \] 7. **Solve for \(a\)**: Since the bases are the same, we can equate the exponents: \[ 2a = 2 \implies a = 1 \] 8. **Determine \(b\)**: From the limit evaluation, we see that the term involving \(b\) does not affect the limit as \(x\) approaches infinity. Thus, \(b\) can be any real number. ### Final Values: - \(a = 1\) - \(b\) can be any real number.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are

If lim_(x->0)(1+a x+b x^2)^(2/x)=e^3, then find the value of a and b.

If lim_(xto0) (1+ax+bx^(2))^(2//x)=e^(3) , then find the values of a and b.

If lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0 , find the values of a and b.

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

If l=lim_(xtooo)((x+1)/(x-1))^(x) , the value of {l} and [l] are

If lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4, then

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

Evaluate lim_(xtooo)((x-3)/(x+2))^(x)

If lim_(xtooo) {(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values of a and b.

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If x gt0 and g is bounded function then lim(ntooo)(f(x)e^(nx)+g(x))/(e...

    Text Solution

    |

  2. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  3. If lim(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

    Text Solution

    |

  4. If lim(xto0)({(a-n)nx-tanx}sin nx)/(x^(2))=0, where n is non zero real...

    Text Solution

    |

  5. Find the values of a and b in order that underset(xto0)lim(x(1+acosx...

    Text Solution

    |

  6. Evaluate underset(xto0)lim(sin[cosx])/(1+[cosx]) ([.] denotes the grea...

    Text Solution

    |

  7. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  8. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  9. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  10. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  11. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  12. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  13. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  14. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  15. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  16. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  17. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  18. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  19. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  20. Solve (1-x)dy=e^y dx

    Text Solution

    |