Home
Class 12
MATHS
Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2...

Let` f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):}`
Then, `lim_(xto2) f(x)`

A

exists only when `k=1`

B

exists for every real k

C

exists for every real k except `k=1`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the function \( f(x) \) as \( x \) approaches 2. The function is defined as follows: \[ f(x) = \begin{cases} x^2 & \text{if } x \notin \mathbb{Z} \\ \frac{k(x^2 - 4)}{2 - x} & \text{if } x \in \mathbb{Z} \end{cases} \] Since we are interested in the limit as \( x \) approaches 2, we will consider the case where \( x \) is not an integer (as \( x \) approaches 2, it will be very close to 2 but not equal to 2). ### Step 1: Analyze the function for \( x \notin \mathbb{Z} \) For \( x \notin \mathbb{Z} \), we have: \[ f(x) = x^2 \] ### Step 2: Calculate the limit as \( x \) approaches 2 We can directly substitute \( x = 2 \) into the function \( f(x) \): \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} x^2 = 2^2 = 4 \] ### Step 3: Analyze the function for \( x \in \mathbb{Z} \) Now, we also need to consider the case when \( x \) is an integer. Specifically, we will look at the limit of the second part of the function as \( x \) approaches 2. \[ f(x) = \frac{k(x^2 - 4)}{2 - x} \] ### Step 4: Simplify the expression We recognize that \( x^2 - 4 \) can be factored: \[ x^2 - 4 = (x - 2)(x + 2) \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = \frac{k((x - 2)(x + 2))}{2 - x} \] ### Step 5: Factor out the common terms Notice that \( 2 - x = -(x - 2) \), so we can rewrite the function as: \[ f(x) = \frac{k(x - 2)(x + 2)}{-(x - 2)} = -k(x + 2) \] ### Step 6: Take the limit as \( x \) approaches 2 Now, we can find the limit: \[ \lim_{x \to 2} f(x) = \lim_{x \to 2} -k(x + 2) = -k(2 + 2) = -4k \] ### Step 7: Conclusion For the limit \( \lim_{x \to 2} f(x) \) to exist, it must be equal from both cases (when \( x \) is an integer and when \( x \) is not an integer): \[ 4 = -4k \] Solving for \( k \): \[ k = -1 \] ### Final Result Thus, the limit exists for every real value of \( k \), but specifically, we find that when \( k = -1 \), both cases yield the same limit. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

If f(x) {:{(x^(2)+4," for "x lt 2 ),(x^(3)," for " x gt 2 ):} , find Lim_(x to 2) f(x)

Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))) , then lim_(xto1^(-))f(x)=0 and lim_(xto2^(-))f(x)=2 Statement 2: lim_(xtooo)cot^(-1)x=0 and lim_(xto -oo)cot^(-1)x=pi

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim_(xto oo)f(x) is

If f(x)=((x^2+5x+3)/(x^2+x+2))^x then lim_(xrarroo)f(x) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. lim (xto (pi)/(3 )) (sin ((pi)/(3)-x))/( 2 cos x-1) is equal to:

    Text Solution

    |

  2. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  3. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  4. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  5. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  6. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  7. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  8. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  9. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  10. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  11. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  12. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  13. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  14. Solve (1-x)dy=e^y dx

    Text Solution

    |

  15. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  16. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  17. Solve ydx=(1+x^2)dy

    Text Solution

    |

  18. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  19. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  20. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |