Home
Class 12
MATHS
If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1...

If `f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxlt3):}` then value of `lim_(xto1)f(x)+lim_(xto2^(+))f(x)` is

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits of the piecewise function \( f(x) \) at specific points and then sum those limits. The function is defined as follows: \[ f(x) = \begin{cases} \frac{\sin(\pi x)}{2} & \text{if } x < 1 \\ 4x - 3 & \text{if } 1 \leq x \leq 2 \\ \log_2(2x^2 - 4) & \text{if } 2 < x < 3 \end{cases} \] We need to find the value of \( \lim_{x \to 1} f(x) + \lim_{x \to 2^+} f(x) \). ### Step 1: Evaluate \( \lim_{x \to 1} f(x) \) Since \( x \) approaches 1 from the left, we use the first case of the piecewise function: \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sin(\pi x)}{2} \] Substituting \( x = 1 \): \[ \lim_{x \to 1} f(x) = \frac{\sin(\pi \cdot 1)}{2} = \frac{\sin(\pi)}{2} = \frac{0}{2} = 0 \] ### Step 2: Evaluate \( \lim_{x \to 2^+} f(x) \) Since \( x \) approaches 2 from the right, we use the third case of the piecewise function: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \log_2(2x^2 - 4) \] Substituting \( x = 2 \): \[ \lim_{x \to 2^+} f(x) = \log_2(2 \cdot 2^2 - 4) = \log_2(2 \cdot 4 - 4) = \log_2(8 - 4) = \log_2(4) \] We know that \( \log_2(4) = 2 \) because \( 4 = 2^2 \). ### Step 3: Combine the limits Now we can sum the two limits: \[ \lim_{x \to 1} f(x) + \lim_{x \to 2^+} f(x) = 0 + 2 = 2 \] ### Final Answer The value of \( \lim_{x \to 1} f(x) + \lim_{x \to 2^+} f(x) \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Evaluate x lim_(xto2) (x-2)/(log_(a)(x-1)).

Evalaute lim_(xto1) (1+logx-x)/(1-2x+x^(2))

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

Evaluate lim_(xto1) (1-x)"tan"(pix)/(2).

Evaluate lim_(xto 1//2) ((4x^(2)-1))/((2x-1)) .

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. lim(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to...

    Text Solution

    |

  2. Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim(xt...

    Text Solution

    |

  3. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  4. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  5. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  6. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  7. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  8. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  9. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  10. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  11. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  12. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  13. Solve (1-x)dy=e^y dx

    Text Solution

    |

  14. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  15. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  16. Solve ydx=(1+x^2)dy

    Text Solution

    |

  17. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  18. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  19. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  20. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |