Home
Class 12
MATHS
If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) f...

If `f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2))` for `x!=0` is continuous at `x=0`, then `A+B+f(0)` is

A

4

B

-4

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) = \frac{4 + \sin(2x) + a \sin(x) + b \cos(x)}{x^2} \) is continuous at \( x = 0 \). This means that the limit of \( f(x) \) as \( x \) approaches 0 must equal \( f(0) \). ### Step 1: Evaluate \( f(0) \) Since \( f(x) \) is defined for \( x \neq 0 \), we need to find \( f(0) \) by taking the limit as \( x \) approaches 0. ### Step 2: Calculate the limit as \( x \to 0 \) We need to compute: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{4 + \sin(2x) + a \sin(x) + b \cos(x)}{x^2} \] ### Step 3: Substitute \( \sin(2x) \) and \( \cos(x) \) Using the small angle approximations: - \( \sin(2x) \approx 2x \) as \( x \to 0 \) - \( \sin(x) \approx x \) as \( x \to 0 \) - \( \cos(x) \approx 1 \) as \( x \to 0 \) So we can rewrite the limit: \[ \lim_{x \to 0} \frac{4 + 2x + ax + b}{x^2} \] ### Step 4: Combine terms in the numerator This simplifies to: \[ \lim_{x \to 0} \frac{(4 + b) + (2 + a)x}{x^2} \] ### Step 5: Analyze the limit For the limit to exist and be finite as \( x \to 0 \), the constant term in the numerator must equal zero: \[ 4 + b = 0 \implies b = -4 \] ### Step 6: Substitute \( b \) back into the limit Now substituting \( b = -4 \): \[ \lim_{x \to 0} \frac{(2 + a)x}{x^2} = \lim_{x \to 0} \frac{2 + a}{x} \] For this limit to be finite, we need \( 2 + a = 0 \): \[ a = -2 \] ### Step 7: Calculate \( f(0) \) Now we have \( a = -2 \) and \( b = -4 \). We can now evaluate \( f(0) \): \[ f(0) = \lim_{x \to 0} \frac{4 + \sin(2x) - 2\sin(x) - 4\cos(x)}{x^2} \] Substituting \( a \) and \( b \): \[ \lim_{x \to 0} \frac{(4 - 4) + (2 - 2)x}{x^2} = \lim_{x \to 0} \frac{0}{x^2} = 0 \] ### Step 8: Find \( A + B + f(0) \) Now we can find: \[ A + B + f(0) = -2 + (-4) + 0 = -6 \] Thus, the final answer is: \[ \boxed{-6} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

If the function f(x)=(sin3x+a sin 2x+b)/(x^(3)), x ne 0 is continuous at x=0 and f(0)=K, AA K in R , then b-a is equal to

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If the function f(x)=(sin10 x)/x , x!=0 is continuous at x=0 , find f(0) .

If f(x)={{:((a+bcosx+csinx)/x^2,xgt0), (9,xge0):}} is continuous at x = 0 , then the value of (|a|+|b|)/5 is

If f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(0)=0,f(x) is continuous at x= 0 or not ?

f(x) = sinx - sin2x in [0,pi]

If f(x)=((1-tanx)/(1+sinx))^(cosec x) is to be made continuous at x=0, then f(0) must be equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxl...

    Text Solution

    |

  2. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  3. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  4. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  5. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  6. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  7. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  8. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  9. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  10. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  11. Solve (1-x)dy=e^y dx

    Text Solution

    |

  12. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  13. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  14. Solve ydx=(1+x^2)dy

    Text Solution

    |

  15. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  16. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  17. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  18. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  19. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  20. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |