Home
Class 12
MATHS
If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) for...

If `f(x)=(sin3x+Asin2x+Bsinx)/(x^(5))` for`x!=0` is continuous at `x=0`, then `A+B+f(0)` is

A

0

B

4

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) = \frac{\sin(3x) + A \sin(2x) + B \sin(x)}{x^5} \) is continuous at \( x = 0 \). This requires that the limit of \( f(x) \) as \( x \) approaches 0 equals \( f(0) \). ### Step-by-Step Solution: 1. **Find \( f(0) \)**: Since \( f(x) \) is defined for \( x \neq 0 \), we need to find \( f(0) \) by evaluating the limit: \[ f(0) = \lim_{x \to 0} f(x) \] 2. **Use Taylor Series Expansion**: We will use the Taylor series expansions for \( \sin(3x) \), \( \sin(2x) \), and \( \sin(x) \) around \( x = 0 \): - \( \sin(3x) = 3x - \frac{(3x)^3}{6} + \frac{(3x)^5}{120} + O(x^7) = 3x - \frac{27x^3}{6} + \frac{243x^5}{120} + O(x^7) \) - \( \sin(2x) = 2x - \frac{(2x)^3}{6} + \frac{(2x)^5}{120} + O(x^7) = 2x - \frac{8x^3}{6} + \frac{32x^5}{120} + O(x^7) \) - \( \sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7) \) 3. **Combine the Expansions**: Substitute the expansions into \( f(x) \): \[ f(x) = \frac{(3x - \frac{27x^3}{6} + \frac{243x^5}{120}) + A(2x - \frac{8x^3}{6} + \frac{32x^5}{120}) + B(x - \frac{x^3}{6} + \frac{x^5}{120})}{x^5} \] 4. **Simplify the Numerator**: Combine like terms in the numerator: \[ = \frac{(3 + 2A + B)x + \left(-\frac{27}{6} - \frac{8A}{6} - \frac{B}{6}\right)x^3 + \left(\frac{243}{120} + \frac{32A}{120} + \frac{B}{120}\right)x^5}{x^5} \] \[ = \frac{(3 + 2A + B)}{x^4} + \frac{-\frac{27 + 8A + B}{6}}{x^2} + \left(\frac{243 + 32A + B}{120}\right) \] 5. **Take the Limit as \( x \to 0 \)**: For \( f(x) \) to be continuous at \( x = 0 \), the coefficients of \( x^4 \) and \( x^2 \) must be zero: - \( 3 + 2A + B = 0 \) (1) - \( -\frac{27 + 8A + B}{6} = 0 \) (2) 6. **Solve the System of Equations**: From equation (1): \[ B = -3 - 2A \] Substitute into equation (2): \[ -\frac{27 + 8A - 3 - 2A}{6} = 0 \] Simplifying gives: \[ -\frac{24 + 6A}{6} = 0 \implies 24 + 6A = 0 \implies A = -4 \] Substitute \( A = -4 \) back into equation (1): \[ B = -3 - 2(-4) = -3 + 8 = 5 \] 7. **Calculate \( A + B + f(0) \)**: Now we have \( A = -4 \), \( B = 5 \), and since the limit gives \( f(0) = \frac{243 + 32(-4) + 5}{120} = 1 \): \[ A + B + f(0) = -4 + 5 + 1 = 2 \] ### Final Answer: \[ A + B + f(0) = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0 , then A+B+f(0) is

If f(x)=(sin3pix+Asin5pix+Bsinpix)/((x-1)^(5)) for x!=1 is continuous at x=1 and f(x)=(p^(2)pi^(5))/((p+1)) , then evaluate p.

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

If the function f(x)=(sin3x+a sin 2x+b)/(x^(3)), x ne 0 is continuous at x=0 and f(0)=K, AA K in R , then b-a is equal to

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

Show that f(x)={(sin3x)/(tan2x),\ \ \ if\ x 0 is continuous at x=0

If the function f(x)=(sin10 x)/x , x!=0 is continuous at x=0 , find f(0) .

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0)...

    Text Solution

    |

  2. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  3. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  4. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  5. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  6. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  7. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  8. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  9. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  10. Solve (1-x)dy=e^y dx

    Text Solution

    |

  11. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  12. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  13. Solve ydx=(1+x^2)dy

    Text Solution

    |

  14. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  15. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  16. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  17. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  18. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  19. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  20. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |