Home
Class 12
MATHS
If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x})...

If `f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log_(e)a,x=0):}`
Then at x=0, (where [x] and {x} are the greatest integer function and fraction part of x respectively

A

`f(x)` is continuous

B

`f(x)` is discontinuous

C

`lim_(xto0^(+))f(x)=a`

D

`lim_(xto0)f(x)=1/(log_(e)a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} \frac{a^{2[x] + \{x\}} - 1}{2[x] + \{x\}}, & x \neq 0 \\ \log_e a, & x = 0 \end{cases} \] We need to determine the behavior of \( f(x) \) as \( x \) approaches 0 from both sides (left-hand limit and right-hand limit). ### Step 1: Calculate the Left-Hand Limit as \( x \to 0^- \) For \( x \to 0^- \), we have: - \( [x] = -1 \) (the greatest integer less than or equal to \( x \)) - \( \{x\} = x - [x] = x + 1 \) Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{a^{2(-1) + (x + 1)} - 1}{2(-1) + (x + 1)} = \frac{a^{-2 + x + 1} - 1}{-2 + x + 1} = \frac{a^{x - 1} - 1}{x - 1} \] Now we need to compute the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{a^{x - 1} - 1}{x - 1} \] ### Step 2: Apply L'Hôpital's Rule As \( x \to 0^- \), both the numerator and denominator approach 0, so we can apply L'Hôpital's Rule: \[ \text{Differentiate the numerator: } \frac{d}{dx}(a^{x - 1}) = a^{x - 1} \ln a \] \[ \text{Differentiate the denominator: } \frac{d}{dx}(x - 1) = 1 \] Thus, we have: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{a^{x - 1} \ln a}{1} = a^{-1} \ln a \] ### Step 3: Calculate the Right-Hand Limit as \( x \to 0^+ \) For \( x \to 0^+ \): - \( [x] = 0 \) - \( \{x\} = x \) Thus, we can rewrite \( f(x) \): \[ f(x) = \frac{a^{2(0) + x} - 1}{2(0) + x} = \frac{a^{x} - 1}{x} \] Now we compute the limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{a^{x} - 1}{x} \] ### Step 4: Apply L'Hôpital's Rule Again As \( x \to 0^+ \), both the numerator and denominator approach 0, so we apply L'Hôpital's Rule: \[ \text{Differentiate the numerator: } \frac{d}{dx}(a^{x}) = a^{x} \ln a \] \[ \text{Differentiate the denominator: } \frac{d}{dx}(x) = 1 \] Thus, we have: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{a^{x} \ln a}{1} = \ln a \] ### Step 5: Compare the Limits Now we compare the left-hand limit and the right-hand limit: - Left-hand limit: \( \frac{\ln a}{a} \) - Right-hand limit: \( \ln a \) Since \( \frac{\ln a}{a} \neq \ln a \) for \( a \neq 1 \), we conclude that the limits are not equal. ### Conclusion Since the left-hand limit does not equal the right-hand limit, the function \( f(x) \) is discontinuous at \( x = 0 \). ### Final Answer The function \( f(x) \) is discontinuous at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Solve the equation [x]{x}=x, where [] and {} denote the greatest integer function and fractional part, respectively.

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):} , then (where [.] represents the greatest integer function)

In the questions, [x]a n d{x} represent the greatest integer function and the fractional part function, respectively. Solve: [x]^2-5[x]+6=0.

If f(x)={{:([x]+sqrt({x})",", xlt1),((1)/([x]+{x}^(2))",",xge1):} , then [where [.] and {.} represent the greatest integer and fractional part functions respectively]

Solve (x-2)[x]={x}-1, (where [x]a n d{x} denote the greatest integer function less than or equal to x and the fractional part function, respectively).

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x)=(4+sin2x+a sinx+Bcosx)/(x^(2)) for x!=0 is continuous at x=0, ...

    Text Solution

    |

  2. If f(x)=(sin3x+Asin2x+Bsinx)/(x^(5)) forx!=0 is continuous at x=0, the...

    Text Solution

    |

  3. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  4. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  5. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  6. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  7. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  8. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  9. Solve (1-x)dy=e^y dx

    Text Solution

    |

  10. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  11. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  12. Solve ydx=(1+x^2)dy

    Text Solution

    |

  13. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  14. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  15. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  16. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  17. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  18. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  19. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  20. Which of the following function has finite number of points of ...

    Text Solution

    |