Home
Class 12
MATHS
f(x)=[tan^(-1)x] where [.] denotes the g...

`f(x)=[tan^(-1)x]` where [.] denotes the greatest integer function, is discontinous at

A

`x=(pi)/4,(pi)/4` and 0

B

`x=(pi)/3,-(pi)/3` and 0

C

`x=tan1, -tan1, -1tan1 and 0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) = [\tan^{-1} x] \) (where \([.]\) denotes the greatest integer function) is discontinuous, we need to analyze the behavior of the function. ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = [\tan^{-1} x] \) takes the value of the greatest integer less than or equal to \( \tan^{-1} x \). The function \( \tan^{-1} x \) (or arctan) is continuous and maps \( x \) from \( -\infty \) to \( +\infty \) into the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \). **Hint**: Recall that the greatest integer function \([x]\) is discontinuous at integer values of \( x \). 2. **Identifying Points of Discontinuity**: The greatest integer function \([x]\) is discontinuous at integer values. Therefore, we need to find when \( \tan^{-1} x \) equals an integer. The possible integer values of \( \tan^{-1} x \) within the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \) are \( -1, 0, \) and \( 1 \). **Hint**: Determine the values of \( x \) for which \( \tan^{-1} x = n \) where \( n \) is an integer. 3. **Finding \( x \) Values**: - For \( \tan^{-1} x = -1 \): \[ x = \tan(-1) = -\tan(1) \] - For \( \tan^{-1} x = 0 \): \[ x = \tan(0) = 0 \] - For \( \tan^{-1} x = 1 \): \[ x = \tan(1) \quad (\text{where } 1 \text{ is in radians}) \] **Hint**: Use the tangent function to find the corresponding \( x \) values for each integer. 4. **Conclusion**: The function \( f(x) = [\tan^{-1} x] \) is discontinuous at: - \( x = -\tan(1) \) - \( x = 0 \) - \( x = \tan(1) \) Therefore, the points of discontinuity are \( x = -\tan(1), 0, \tan(1) \). ### Final Answer: The function \( f(x) = [\tan^{-1} x] \) is discontinuous at \( x = -\tan(1), 0, \tan(1) \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

The function f(x)={x} , where [x] denotes the greatest integer function , is continuous at

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Prove that f(x) = [tan x] + sqrt(tan x - [tan x]) . (where [.] denotes greatest integer function) is continuous in [0, (pi)/(2)) .

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x)={((a^(2[x]+{x})-1)"/ "(2[x]+{x}),x!=0),(log(e)a,x=0):} Then ...

    Text Solution

    |

  2. Let [] donots the greatest integer function and f (x)= [tan ^(2) x], t...

    Text Solution

    |

  3. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  4. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  5. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  6. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  7. Solve (1-x)dy=e^y dx

    Text Solution

    |

  8. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  9. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  10. Solve ydx=(1+x^2)dy

    Text Solution

    |

  11. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  12. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  13. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  14. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  15. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  16. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  17. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  18. Which of the following function has finite number of points of ...

    Text Solution

    |

  19. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  20. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |