Home
Class 12
MATHS
if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi...

if `f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ` ([.] denotes the greatest integer function), then

A

`f(x)` is continuous in R

B

`f(x)` is continuous in R but not differentiable in R

C

`f(x)` exists everywhere but `f'(x)` does not exists at some `x epsilonR`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \frac{\tan(\pi \lfloor 2x - 3\pi \rfloor)}{1 + \lfloor 2x - 3\pi \rfloor^2} \] where \( \lfloor . \rfloor \) denotes the greatest integer function. ### Step 1: Understanding the Greatest Integer Function The greatest integer function \( \lfloor x \rfloor \) gives the largest integer less than or equal to \( x \). Therefore, we can denote: Let \( n = \lfloor 2x - 3\pi \rfloor \), where \( n \) is an integer. ### Step 2: Expressing the Function in Terms of \( n \) We can rewrite \( f(x) \) as: \[ f(x) = \frac{\tan(n\pi)}{1 + n^2} \] ### Step 3: Evaluating \( \tan(n\pi) \) For any integer \( n \): \[ \tan(n\pi) = 0 \] This is because the tangent function is zero at all integer multiples of \( \pi \). ### Step 4: Substituting Back into the Function Substituting \( \tan(n\pi) = 0 \) into the function gives: \[ f(x) = \frac{0}{1 + n^2} = 0 \] ### Step 5: Conclusion About the Function Since \( f(x) = 0 \) for all \( x \) where \( n \) is defined, we conclude that: \[ f(x) = 0 \text{ for all } x \] ### Step 6: Analyzing Continuity and Differentiability 1. **Continuity**: A constant function is continuous everywhere. 2. **Differentiability**: The derivative of a constant function is zero, hence \( f'(x) = 0 \). ### Final Result Thus, we conclude that: - \( f(x) \) is a constant function equal to 0. - It is continuous everywhere in \( \mathbb{R} \). - It is differentiable everywhere in \( \mathbb{R} \). ### Answer The correct option is **A**: \( f(x) \) is continuous and differentiable in \( \mathbb{R} \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=sin{(pi)/(2)[x]-x^(5)},1ltxlt2 and [.] denotes the greatest integer function, then f'(5sqrt((pi)/(2))) is equal to

If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the greatest integer function,then

Let f(x) = (sin {pi[x-pi]})/(1+[x^(2)]) , where [.] stands for the greatest integer function. Then, f(x) is continuous or not?

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi) , where [*] denotes the greatest integer function, the number of solutions in the interval (30,40) is ………… .

The function f(x)=(tan |pi[x-pi]|)/(1+[x]^(2)) , where [x] denotes the greatest integer less than or equal to x, is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is d...

    Text Solution

    |

  2. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  3. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  4. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  5. Solve (1-x)dy=e^y dx

    Text Solution

    |

  6. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  7. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  8. Solve ydx=(1+x^2)dy

    Text Solution

    |

  9. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  10. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  11. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  12. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  13. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  14. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  15. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  16. Which of the following function has finite number of points of ...

    Text Solution

    |

  17. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  18. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  19. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  20. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |