Home
Class 12
MATHS
The jump value of the function at the po...

The jump value of the function at the point of the discontinuity of the function `f(x)=(1-k^(1//x))/(1+k^(1//x))(kgt0)` is (a) 4 (b) 2 (c) 3 (d) none of these

A

4

B

2

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the jump value of the function \( f(x) = \frac{1 - k^{1/x}}{1 + k^{1/x}} \) at the point of discontinuity (which occurs as \( x \) approaches 0), we will calculate the right-hand limit and the left-hand limit at this point. ### Step 1: Calculate the Right-Hand Limit We need to evaluate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - k^{1/x}}{1 + k^{1/x}} \] As \( x \to 0^+ \), \( \frac{1}{x} \to +\infty \). Therefore, we consider two cases based on the value of \( k \): 1. **If \( k > 1 \)**: - \( k^{1/x} \to +\infty \) - Thus, \( f(x) \to \frac{1 - \infty}{1 + \infty} = \frac{-\infty}{+\infty} = -1 \) 2. **If \( 0 < k < 1 \)**: - \( k^{1/x} \to 0 \) - Thus, \( f(x) \to \frac{1 - 0}{1 + 0} = 1 \) ### Step 2: Calculate the Left-Hand Limit Now we evaluate: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - k^{1/x}}{1 + k^{1/x}} \] As \( x \to 0^- \), \( \frac{1}{x} \to -\infty \). Again, we consider two cases based on the value of \( k \): 1. **If \( k > 1 \)**: - \( k^{1/x} \to 0 \) - Thus, \( f(x) \to \frac{1 - 0}{1 + 0} = 1 \) 2. **If \( 0 < k < 1 \)**: - \( k^{1/x} \to +\infty \) - Thus, \( f(x) \to \frac{1 - \infty}{1 + \infty} = \frac{-\infty}{+\infty} = -1 \) ### Step 3: Calculate the Jump Value The jump value is given by: \[ \text{Jump} = | \text{Right-hand limit} - \text{Left-hand limit} | \] - **If \( k > 1 \)**: - Right-hand limit = -1 - Left-hand limit = 1 - Jump = \( | -1 - 1 | = | -2 | = 2 \) - **If \( 0 < k < 1 \)**: - Right-hand limit = 1 - Left-hand limit = -1 - Jump = \( | 1 - (-1) | = | 1 + 1 | = 2 \) ### Conclusion In both cases, the jump value is \( 2 \). Thus, the answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Find the points of discontinuity of the function: f(x)=1/(2sinx-1)

Find the points of discontinuity of the function: f(x)=1/(1-e^((x-1)/(x-2)))

Find the points of discontinuity of the function: f(x)=1/(1-e^((x-1)/(x-2)))

Find the points of discontinuity of the function: f(x)=1/(x^4+x^2+1)

The set of points of discontinuity of the function f(x)=(1)/(log|x|),is

Given the function f(x)=1/(x+2) . Find the points of discontinuity of the function f(f(x))

Given the function f(x)=1/(x+2) . Find the points of discontinuity of the function f(f(x))

Given the function f(x)=1/(x+2) . Find the points of discontinuity of the function f(f(x))

The points of discontinuity of the function f(x)={2sqrt(x),0<=x<=l. 4-2x,1 < x

If f(x)=1/(1-x), then the set of points discontinuity of the function f(f(f(x)))i s {1} (b) {0,1} (c) {-1,1} (d) none of these

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. f(x)=[sinx] where [.] denotest the greatest integer function is contin...

    Text Solution

    |

  2. if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greates...

    Text Solution

    |

  3. The jump value of the function at the point of the discontinuity of th...

    Text Solution

    |

  4. Solve (1-x)dy=e^y dx

    Text Solution

    |

  5. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  6. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  7. Solve ydx=(1+x^2)dy

    Text Solution

    |

  8. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  9. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  10. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  11. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  12. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  13. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  14. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  15. Which of the following function has finite number of points of ...

    Text Solution

    |

  16. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  17. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  18. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  19. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |

  20. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |