Home
Class 12
MATHS
If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x)...

If `lim_(xtoa^(+))f(x)=l=lim_(xtoa^(-))g(x)` and `lim_(xtoa^(-))f(x)=m=lim_(xtoa^(+))g(x)`, the function `f(x).g(x)` is

A

is not continuous at `x=a`

B

has a limit when `xtoa` and equal to `lm`

C

is continuous at x=a

D

has a limit when `xtoa` and is not equal to `lm`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the limits of the functions \( f(x) \) and \( g(x) \) as \( x \) approaches \( a \) from both sides. ### Step-by-Step Solution: 1. **Understanding the Given Limits**: We are given: \[ \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} g(x) \] \[ \lim_{x \to a^-} f(x) = M = \lim_{x \to a^+} g(x) \] 2. **Finding the Left-Hand Limit of \( f(x)g(x) \)**: We can express the limit of the product \( f(x)g(x) \) as: \[ \lim_{x \to a^-} f(x)g(x) = \lim_{x \to a^-} f(x) \cdot \lim_{x \to a^-} g(x) \] From the given information, we know: \[ \lim_{x \to a^-} f(x) = M \quad \text{and} \quad \lim_{x \to a^-} g(x) = L \] Therefore: \[ \lim_{x \to a^-} f(x)g(x) = M \cdot L \] 3. **Finding the Right-Hand Limit of \( f(x)g(x) \)**: Similarly, we can express the limit of the product as: \[ \lim_{x \to a^+} f(x)g(x) = \lim_{x \to a^+} f(x) \cdot \lim_{x \to a^+} g(x) \] From the given information, we know: \[ \lim_{x \to a^+} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} g(x) = M \] Therefore: \[ \lim_{x \to a^+} f(x)g(x) = L \cdot M \] 4. **Equating the Two Limits**: Since both limits must be equal for the limit of the product to exist: \[ \lim_{x \to a^-} f(x)g(x) = \lim_{x \to a^+} f(x)g(x) \] This gives us: \[ M \cdot L = L \cdot M \] Hence, both limits are equal. 5. **Conclusion**: Since the left-hand limit and right-hand limit are equal, we conclude that: \[ \lim_{x \to a} f(x)g(x) = ML \] Therefore, the function \( f(x)g(x) \) is continuous at \( x = a \) and has a limit equal to \( ML \). ### Final Answer: The function \( f(x)g(x) \) has a limit as \( x \to a \) and is equal to \( ML \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

The graph of y = f(x) is as shown in the following figure. Find the following values (i) f(-3)" "(ii) f(-2)" "(iii) f(0) (iv) f(2)" "(v) f(3)" "(vi) lim_(x to -3) f(x) (vii) lim_(x to 0) f(x)" "(viii)lim_(x to 2) f(x)" "(ix) lim_(x to 3) f(x) (x) lim_(x to 2^(-)) f(x)" "(xi)lim_(x to -2^(+)) f (x)" "(x ii)lim_(x to 0^(-)) f(x) (x iii) lim_(x to 0^(+)) f(x)

If f(x) = (tanx)/(x-pi) , then lim_(xrarr(pi))f(x)= ……………….

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

Let f:R to R be a function given by f(x+y)=f(x)f(y)"for all "x,y in R "If "f(x)=1+xg(x)+x^(2) g(x) phi(x)"such that "lim_(x to 0) g(x)=a and lim_(x to 0) phi(x)=b, then f'(x) is equal to

If both Lim_(xrarrc^(-))f(x) and Lim_(xrarrc^(+))f(x) exist finitely and are equal, then the function f is said to have removable discontinuity at x=c . If both the limits i.e. Lim_(xrarrc^(-))f(x) and Lim_(xrarrc^(+))f(x) exist finitely and are not equal, then the function f is said to have non-removable discontinuity at x=c . Which of the following function not defined at x=0 has removable discontinuity at the origin?

If lim_(x->a)(f(x)/(g(x))) exists, then

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Solve (1-x)dy=e^y dx

    Text Solution

    |

  2. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |

  3. If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x) and lim(xtoa^(-))f(x)=m=lim(x...

    Text Solution

    |

  4. Solve ydx=(1+x^2)dy

    Text Solution

    |

  5. f+g may be a continuous function, if (a) f is continuous and g is disc...

    Text Solution

    |

  6. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  7. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  8. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  9. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  10. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  11. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  12. Which of the following function has finite number of points of ...

    Text Solution

    |

  13. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  14. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  15. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  16. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |

  17. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  18. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  19. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  20. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |