Home
Class 12
MATHS
If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,...

If `f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):}` when [.] denotes the greatest integer function, then:

A

`lim_(xto0)(f(x)=sin1`

B

`lim_(xto0)f(x)=1`

C

`lim_(xto0)f(x)` does not exist

D

`lim_(xto0)f(x)` exists but `f(x)` is not continuous at x=0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \[ f(x) = \begin{cases} \frac{\sin([x] + x)}{[x] + x}, & x \neq 0 \\ 1, & x = 0 \end{cases} \] where \([x]\) denotes the greatest integer function, we need to analyze the limits of \(f(x)\) as \(x\) approaches 0 from both the left and the right. ### Step 1: Calculate the Left-Hand Limit as \(x \to 0^-\) For \(x < 0\), \([x] = -1\). Thus, we have: \[ f(x) = \frac{\sin(-1 + x)}{-1 + x} \] Now, we find the left-hand limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin(-1 + x)}{-1 + x} \] Substituting \(x = 0\): \[ = \frac{\sin(-1)}{-1} = \sin(1) \] ### Step 2: Calculate the Right-Hand Limit as \(x \to 0^+\) For \(x \geq 0\), \([x] = 0\). Thus, we have: \[ f(x) = \frac{\sin(0 + x)}{0 + x} = \frac{\sin(x)}{x} \] Now, we find the right-hand limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin(x)}{x} \] Using the standard limit: \[ = 1 \] ### Step 3: Check Continuity at \(x = 0\) We know: - Left-hand limit as \(x \to 0^- = \sin(1)\) - Right-hand limit as \(x \to 0^+ = 1\) - \(f(0) = 1\) Since the left-hand limit \(\sin(1)\) is not equal to the right-hand limit \(1\), the limit as \(x\) approaches \(0\) does not exist. ### Conclusion Since the left-hand limit and right-hand limit are not equal, the function \(f(x)\) is discontinuous at \(x = 0\). ### Final Answer The limit does not exist at \(x = 0\), and thus the function is discontinuous at that point. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Let f(x)={{:(x[(1)/(x)]+x[x],if, x ne0),(0,if,x=0):} (where [x] denotes the greatest integer function). Then the correct statement is/are

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. The value of f(0) such that f(x)=((1+tanx)/(1+sinx))^(cosecx) can be m...

    Text Solution

    |

  2. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  3. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  4. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  5. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  6. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  7. Which of the following function has finite number of points of ...

    Text Solution

    |

  8. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  9. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  10. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  11. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |

  12. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  13. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  14. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  15. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  16. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  17. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  18. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  19. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  20. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |