Home
Class 12
MATHS
In x epsilon(0,1),f(x)=[3x^(2)+1], where...

In `x epsilon(0,1),f(x)=[3x^(2)+1]`, where [x] stands for the greatest integer not exceeding x is:

A

continuous

B

continuous except at one point

C

continuous except at two points

D

continuous except at three points

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \lfloor 3x^2 + 1 \rfloor \) for \( x \) in the interval \( (0, 1) \), where \( \lfloor x \rfloor \) denotes the greatest integer function. ### Step 1: Determine the range of \( 3x^2 + 1 \) First, we need to find the values of \( 3x^2 + 1 \) as \( x \) varies from \( 0 \) to \( 1 \). - When \( x = 0 \): \[ 3(0)^2 + 1 = 1 \] - When \( x = 1 \): \[ 3(1)^2 + 1 = 4 \] Thus, as \( x \) varies from \( 0 \) to \( 1 \), \( 3x^2 + 1 \) varies from \( 1 \) to \( 4 \). ### Step 2: Identify the integer values in the range The function \( f(x) = \lfloor 3x^2 + 1 \rfloor \) will take integer values based on the output of \( 3x^2 + 1 \). - For \( 1 \leq 3x^2 + 1 < 2 \): - This occurs when \( 0 \leq 3x^2 < 1 \) or \( 0 \leq x < \frac{1}{\sqrt{3}} \). - In this interval, \( f(x) = 1 \). - For \( 2 \leq 3x^2 + 1 < 3 \): - This occurs when \( 1 \leq 3x^2 < 2 \) or \( \frac{1}{\sqrt{3}} \leq x < \sqrt{\frac{2}{3}} \). - In this interval, \( f(x) = 2 \). - For \( 3 \leq 3x^2 + 1 < 4 \): - This occurs when \( 2 \leq 3x^2 < 3 \) or \( \sqrt{\frac{2}{3}} \leq x < 1 \). - In this interval, \( f(x) = 3 \). - At \( x = 1 \): - \( f(1) = \lfloor 4 \rfloor = 4 \) (but \( x = 1 \) is not included in the interval). ### Step 3: Identify points of discontinuity The function \( f(x) \) will be discontinuous at points where \( 3x^2 + 1 \) is an integer. - The critical points are: - When \( 3x^2 + 1 = 2 \) (i.e., \( 3x^2 = 1 \) or \( x = \frac{1}{\sqrt{3}} \)). - When \( 3x^2 + 1 = 3 \) (i.e., \( 3x^2 = 2 \) or \( x = \sqrt{\frac{2}{3}} \)). ### Step 4: Conclusion The function \( f(x) \) is continuous everywhere in the interval \( (0, 1) \) except at the points \( x = \frac{1}{\sqrt{3}} \) and \( x = \sqrt{\frac{2}{3}} \). Thus, the function is discontinuous at **two points** in the interval \( (0, 1) \). ### Final Answer The function \( f(x) \) is discontinuous at **two points** in the interval \( (0, 1) \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = (sin {pi[x-pi]})/(1+[x^(2)]) , where [.] stands for the greatest integer function. Then, f(x) is continuous or not?

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R , where [x] is the greatest integer not exceeding x, then the range of f is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Number of points of discontinuity of f(x) =[x^(3)+3x^(2)+7x+2], where [.] represents the greatest integer function in [0,1] is ___________.

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e...

    Text Solution

    |

  2. If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the gr...

    Text Solution

    |

  3. In x epsilon(0,1),f(x)=[3x^(2)+1], where [x] stands for the greatest i...

    Text Solution

    |

  4. If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (...

    Text Solution

    |

  5. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  6. Which of the following function has finite number of points of ...

    Text Solution

    |

  7. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  8. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  9. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  10. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |

  11. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  12. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  13. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  14. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  15. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  16. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  17. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  18. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  19. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  20. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |