Home
Class 12
MATHS
The value of f(0), so that the function ...

The value of `f(0),` so that the function `f(x)=(sqrt(a^2-a x+x^2)-sqrt(a^2+a x+x^2))/(sqrt(a+x)-sqrt(a-x))` becomes continuous for all `x ,` given by `a^(3/2)` (b) `a^(1/2)` (c) `-a^(1/2)` (d) `-a^(3/2)`

A

`asqrt(a)`

B

`-sqrt(a)`

C

`sqrt(a)`

D

`-asqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) such that the function \[ f(x) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}} \] is continuous for all \( x \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Evaluate \( f(0) \)**: First, we substitute \( x = 0 \) into the function: \[ f(0) = \frac{\sqrt{a^2 - a(0) + 0^2} - \sqrt{a^2 + a(0) + 0^2}}{\sqrt{a + 0} - \sqrt{a - 0}} = \frac{\sqrt{a^2} - \sqrt{a^2}}{\sqrt{a} - \sqrt{a}} = \frac{0}{0} \] This results in an indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator separately. 3. **Differentiate the Numerator**: Let \( N(x) = \sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2} \). The derivative \( N'(x) \) is: \[ N'(x) = \frac{1}{2\sqrt{a^2 - ax + x^2}}(-a + 2x) - \frac{1}{2\sqrt{a^2 + ax + x^2}}(a + 2x) \] 4. **Differentiate the Denominator**: Let \( D(x) = \sqrt{a + x} - \sqrt{a - x} \). The derivative \( D'(x) \) is: \[ D'(x) = \frac{1}{2\sqrt{a + x}}(1) + \frac{1}{2\sqrt{a - x}}(1) \] 5. **Evaluate the Limit**: Now we need to evaluate: \[ \lim_{x \to 0} \frac{N'(x)}{D'(x)} \] Plugging \( x = 0 \) into the derivatives: - For \( N'(0) \): \[ N'(0) = \frac{1}{2\sqrt{a^2}}(-a + 0) - \frac{1}{2\sqrt{a^2}}(a + 0) = \frac{-a}{2a} - \frac{a}{2a} = -\frac{1}{2} - \frac{1}{2} = -1 \] - For \( D'(0) \): \[ D'(0) = \frac{1}{2\sqrt{a}} + \frac{1}{2\sqrt{a}} = \frac{1}{\sqrt{a}} \] 6. **Final Calculation**: Therefore, \[ \lim_{x \to 0} f(x) = \frac{-1}{\frac{1}{\sqrt{a}}} = -\sqrt{a} \] 7. **Set \( f(0) \) for Continuity**: For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ f(0) = -\sqrt{a} \] ### Conclusion: Thus, the value of \( f(0) \) that makes the function continuous for all \( x \) is: \[ f(0) = -a^{1/2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=sqrt(1-sqrt(1-x^2))

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

Differentiate the following function (sqrt(x^2+1)+sqrt(x^2-1))/(sqrt(x^2+1)-sqrt(x^2-1)

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

The domain of the function f(x)=sqrt(-log_.3 (x-1))/(sqrt(x^2+2x+8)) is

The range of the function f(x)=tan^(- 1)((x^2+1)/(x^2+sqrt(3))) x in R is

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

Differentiate w.r.t 'x' f(x) = (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. The set of points of discontinuity of the function f(x)=(1)/(log|x|),i...

    Text Solution

    |

  2. Which of the following function has finite number of points of ...

    Text Solution

    |

  3. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  4. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  5. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  6. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |

  7. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  8. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  9. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  10. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  11. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  12. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  13. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  14. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  15. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  16. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |

  17. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  18. Let f(x) ={{:((x-1)^(2) sin (1)/((x-1))-|x|, if x ne 1 ),(-1,if x=1):}...

    Text Solution

    |

  19. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  20. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |