Home
Class 12
MATHS
If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!...

If `f(x)=(x-e^(x)+cos2x)/(x^(2))` where `x!=0`, is continuous at `x=0` then (where, {.} and [x] denotes the fractional part and greatest integer)

A

`f(0)=5/2`

B

`[f(0)]=-2`

C

`{f(0)}=-0.5`

D

`[f(0)].{f(x)}=-1.5`

Text Solution

AI Generated Solution

The correct Answer is:
To determine if the function \( f(x) = \frac{x - e^x + \cos(2x)}{x^2} \) is continuous at \( x = 0 \), we need to find the limit of \( f(x) \) as \( x \) approaches 0 and check if it equals \( f(0) \). ### Step 1: Evaluate the limit as \( x \) approaches 0 We start by substituting \( x = 0 \) into the function: \[ f(0) = \frac{0 - e^0 + \cos(0)}{0^2} = \frac{0 - 1 + 1}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule L'Hôpital's Rule states that for limits of the form \( \frac{0}{0} \), we can differentiate the numerator and denominator: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - e^x + \cos(2x)}{x^2} \] Differentiate the numerator: - The derivative of \( x \) is \( 1 \). - The derivative of \( -e^x \) is \( -e^x \). - The derivative of \( \cos(2x) \) is \( -2\sin(2x) \). Thus, the derivative of the numerator is: \[ 1 - e^x - 2\sin(2x) \] The derivative of the denominator \( x^2 \) is \( 2x \). Now we have: \[ \lim_{x \to 0} \frac{1 - e^x - 2\sin(2x)}{2x} \] ### Step 3: Evaluate the new limit Substituting \( x = 0 \) again gives us: \[ \frac{1 - e^0 - 2\sin(0)}{2 \cdot 0} = \frac{1 - 1 - 0}{0} = \frac{0}{0} \] We apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiate the numerator again: - The derivative of \( 1 \) is \( 0 \). - The derivative of \( -e^x \) is \( -e^x \). - The derivative of \( -2\sin(2x) \) is \( -4\cos(2x) \). Thus, the new numerator is: \[ -e^x - 4\cos(2x) \] The derivative of the denominator \( 2x \) is \( 2 \). Now we have: \[ \lim_{x \to 0} \frac{-e^x - 4\cos(2x)}{2} \] ### Step 5: Evaluate the limit as \( x \) approaches 0 Substituting \( x = 0 \): \[ \frac{-e^0 - 4\cos(0)}{2} = \frac{-1 - 4}{2} = \frac{-5}{2} \] ### Step 6: Conclusion Thus, we find: \[ \lim_{x \to 0} f(x) = -\frac{5}{2} \] For \( f(x) \) to be continuous at \( x = 0 \), we must have \( f(0) = -\frac{5}{2} \). ### Step 7: Check the options 1. **Greatest Integer Function**: \( \lfloor -\frac{5}{2} \rfloor = -3 \) 2. **Fractional Part**: \( \{-\frac{5}{2}\} = 1 - 0.5 = 0.5 \) ### Final Answer The correct option is: \[ \lfloor f(0) \rfloor \cdot \{f(0)\} = -3 \cdot 0.5 = -1.5 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional part function and [.] denotes greatest integer function and sgn(x) is a signum function)

lim_(xtoc)f(x) does not exist when where [.] and {.} denotes greatest integer and fractional part of x

Number of points on [0,2] where f(x)={(x{x}+1,(0lexlt1),(2-{x},1lexle2):} fails to be continuous or derivable is: (where {.} denotes fractional part function)

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is

A point where function f(x) = [sin [x]] is not continuous in (0,2pi) [.] denotes the greatest integer le x, is

If f(x) = {{:([x]+[-x]",",x ne 2),(" "lambda",",x = 2):} and f is continuous at x = 2, where [*] denotes greatest integer function, then lambda is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Which of the following function has finite number of points of ...

    Text Solution

    |

  2. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  3. If f(x)=(x-e^(x)+cos2x)/(x^(2)) where x!=0, is continuous at x=0 then ...

    Text Solution

    |

  4. The value(s) of x for which f(x)=(e^(sinx))/(4-sqrt(x^(2)-9)) is conti...

    Text Solution

    |

  5. Which of the following function(s) defined at x = 0 has/have removable...

    Text Solution

    |

  6. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  7. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  8. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  9. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  10. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  11. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  12. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  13. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  14. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  15. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |

  16. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  17. Let f(x) ={{:((x-1)^(2) sin (1)/((x-1))-|x|, if x ne 1 ),(-1,if x=1):}...

    Text Solution

    |

  18. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  19. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  20. If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity f...

    Text Solution

    |