Home
Class 12
MATHS
If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 th...

If `f(x)=1/((x-1)(x-2))` and `g(x)=1/x^2` then points of discontinuity of `f(g(x))` are

A

`{--1,0,1,1/(sqrt(2))}`

B

`{-1/(sqrt(2)),-1,0,1,1/(sqrt(2))}`

C

`{0,1}`

D

`{0,1,1/(sqrt(2))}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of discontinuity of the function \( f(g(x)) \), where \( f(x) = \frac{1}{(x-1)(x-2)} \) and \( g(x) = \frac{1}{x^2} \), we will follow these steps: ### Step 1: Define the composition \( f(g(x)) \) Given: - \( g(x) = \frac{1}{x^2} \) Now, substituting \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\frac{1}{x^2}\right) = \frac{1}{\left(\frac{1}{x^2} - 1\right)\left(\frac{1}{x^2} - 2\right)} \] ### Step 2: Simplify the expression We need to simplify the expression inside the function: 1. Calculate \( \frac{1}{x^2} - 1 \): \[ \frac{1}{x^2} - 1 = \frac{1 - x^2}{x^2} \] 2. Calculate \( \frac{1}{x^2} - 2 \): \[ \frac{1}{x^2} - 2 = \frac{1 - 2x^2}{x^2} \] Now substituting these back into \( f(g(x)) \): \[ f(g(x)) = \frac{1}{\left(\frac{1 - x^2}{x^2}\right)\left(\frac{1 - 2x^2}{x^2}\right)} = \frac{x^4}{(1 - x^2)(1 - 2x^2)} \] ### Step 3: Identify points of discontinuity The function \( f(g(x)) \) will be discontinuous where the denominator is zero. Therefore, we need to solve: \[ (1 - x^2)(1 - 2x^2) = 0 \] This gives us two equations to solve: 1. \( 1 - x^2 = 0 \) \[ x^2 = 1 \implies x = \pm 1 \] 2. \( 1 - 2x^2 = 0 \) \[ 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}} \] ### Step 4: Check for additional points of discontinuity Since \( g(x) = \frac{1}{x^2} \) is also undefined at \( x = 0 \), we need to include this point as well. ### Final List of Points of Discontinuity Thus, the points of discontinuity for \( f(g(x)) \) are: - \( x = -1 \) - \( x = 1 \) - \( x = -\frac{1}{\sqrt{2}} \) - \( x = \frac{1}{\sqrt{2}} \) - \( x = 0 \) ### Conclusion The points of discontinuity of \( f(g(x)) \) are: \[ \{-1, 1, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x + 1)/(x-1) and g(x) = (1)/(x-2) , then (fog)(x) is discontinuous at

If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity fo f(f(x)) is [0,2] is,

Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number of points of discontinuity of f [g (x)] is

Given the function f(x)=1/(x+2) . Find the points of discontinuity of the function f(f(x))

Given the function f(x)=1/(x+2) . Find the points of discontinuity of the function f(f(x))

Given the function f(x)=1/(x+2) . Find the points of discontinuity of the function f(f(x))

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

Given the function f(x) = 1/( 1-x) , The points of discontinuity of the composite function f[f{f(x)}] are given by

Let g(x) = f(f(x)) where f(x) = { 1 + x ; 0 <=x<=2} and f(x) = {3 - x; 2 < x <= 3} then the number of points of discontinuity of g(x) in [0,3] is :

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Let f(x) = [x] and g(x) = {{:(0",",x in Z),(x^(2)",",x in R - Z):}, th...

    Text Solution

    |

  2. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  3. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  4. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  5. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  6. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  7. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  8. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  9. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  10. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |

  11. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  12. Let f(x) ={{:((x-1)^(2) sin (1)/((x-1))-|x|, if x ne 1 ),(-1,if x=1):}...

    Text Solution

    |

  13. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  14. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  15. If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity f...

    Text Solution

    |

  16. Let f(x) = lambda + mu|x| + v |x|^(2) " where " lambda, mu, v are re...

    Text Solution

    |

  17. Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge ...

    Text Solution

    |

  18. Let f: R to R satisfies |f(x)|lex^(2)AAx in R. then show thata f(x)...

    Text Solution

    |

  19. f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], where[.] denotes the greatest ...

    Text Solution

    |

  20. Discuss the continuity of the function f(x) = underset(n rarr oo)(lim)...

    Text Solution

    |