Home
Class 12
MATHS
Prove that the function If f(x)={:{((x)/...

Prove that the function If `f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" "0", " x=0):}` is not differentiable

A

Differentiable

B

Non-differentiable

C

L.H.L at x-0 is 1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the function \[ f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] is not differentiable at \( x = 0 \), we will calculate the left-hand derivative (LHD) and the right-hand derivative (RHD) at \( x = 0 \) and show that they are not equal. ### Step 1: Calculate the Left-Hand Derivative (LHD) The left-hand derivative at \( x = 0 \) is given by: \[ LHD = \lim_{h \to 0^-} \frac{f(0) - f(-h)}{-h} \] Since \( f(0) = 0 \), we can substitute this into the equation: \[ LHD = \lim_{h \to 0^-} \frac{0 - f(-h)}{-h} = \lim_{h \to 0^-} \frac{-f(-h)}{-h} = \lim_{h \to 0^-} \frac{f(-h)}{h} \] Now, for \( x = -h \) (where \( h > 0 \)), we have: \[ f(-h) = \frac{-h}{1 + e^{-\frac{1}{h}}} \] Substituting this into the LHD expression gives: \[ LHD = \lim_{h \to 0^-} \frac{\frac{-h}{1 + e^{-\frac{1}{h}}}}{h} \] This simplifies to: \[ LHD = \lim_{h \to 0^-} \frac{-1}{1 + e^{-\frac{1}{h}}} \] As \( h \to 0^- \), \( e^{-\frac{1}{h}} \to 0 \) (since \(-\frac{1}{h} \to -\infty\)), so we have: \[ LHD = \frac{-1}{1 + 0} = -1 \] ### Step 2: Calculate the Right-Hand Derivative (RHD) The right-hand derivative at \( x = 0 \) is given by: \[ RHD = \lim_{h \to 0^+} \frac{f(0) - f(h)}{-h} \] Again, since \( f(0) = 0 \), we can substitute this into the equation: \[ RHD = \lim_{h \to 0^+} \frac{0 - f(h)}{-h} = \lim_{h \to 0^+} \frac{-f(h)}{-h} = \lim_{h \to 0^+} \frac{f(h)}{h} \] For \( x = h \) (where \( h > 0 \)), we have: \[ f(h) = \frac{h}{1 + e^{\frac{1}{h}}} \] Substituting this into the RHD expression gives: \[ RHD = \lim_{h \to 0^+} \frac{\frac{h}{1 + e^{\frac{1}{h}}}}{h} \] This simplifies to: \[ RHD = \lim_{h \to 0^+} \frac{1}{1 + e^{\frac{1}{h}}} \] As \( h \to 0^+ \), \( e^{\frac{1}{h}} \to \infty \) (since \(\frac{1}{h} \to \infty\)), so we have: \[ RHD = \frac{1}{1 + \infty} = 0 \] ### Step 3: Conclusion Now we have: \[ LHD = -1 \quad \text{and} \quad RHD = 0 \] Since \( LHD \neq RHD \), we conclude that the function \( f(x) \) is not differentiable at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

Show that the function f(x) ={:{((sin 3x)/(x)", "x ne 0),(1", " x= 0):}, is discontinuous at x=0.

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Show that the function defined by f(x) = {{:(x^(2) sin 1//x",",x ne 0),(0",",x = 0):} is differentiable for every value of x, but the derivative is not continuous for x=0

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if x ne 0),(k, if x = 0):} remains discontinuous at x = 0 , regardings the choice iof k.

Prove that the function f defined by f(x) = {{:((x)/(|x|+2x^(2)), if x ne 0),(k, if x = 0):} remains discontinuous at x = 0 , regardings the choice iof k.

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of ...

    Text Solution

    |

  2. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  3. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  4. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  5. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  6. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  7. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  8. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |

  9. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  10. Let f(x) ={{:((x-1)^(2) sin (1)/((x-1))-|x|, if x ne 1 ),(-1,if x=1):}...

    Text Solution

    |

  11. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  12. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  13. If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity f...

    Text Solution

    |

  14. Let f(x) = lambda + mu|x| + v |x|^(2) " where " lambda, mu, v are re...

    Text Solution

    |

  15. Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge ...

    Text Solution

    |

  16. Let f: R to R satisfies |f(x)|lex^(2)AAx in R. then show thata f(x)...

    Text Solution

    |

  17. f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], where[.] denotes the greatest ...

    Text Solution

    |

  18. Discuss the continuity of the function f(x) = underset(n rarr oo)(lim)...

    Text Solution

    |

  19. If a function f : [-2a, 2a] rarr R is an odd function such that f(x) =...

    Text Solution

    |

  20. Let f(x+y) = f(x) f(y) and f(x) = 1 + x g(x) G(x) where lim(x->0) g(x)...

    Text Solution

    |