Home
Class 12
MATHS
If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/...

If `f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):}` then which of the following is true for f(x)?

A

continuous at x=0

B

continuous at `x=(pi)/2`

C

Non differentiable at x=0

D

Differentiable at `x=(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the function \( f(x) \) given by: \[ f(x) = \begin{cases} 1 & \text{if } x < 0 \\ 1 + \sin x & \text{if } 0 \leq x \leq \frac{\pi}{2} \\ 2 + (x - \frac{\pi}{2}) & \text{if } x > \frac{\pi}{2} \end{cases} \] we will check for continuity and differentiability at the points \( x = 0 \) and \( x = \frac{\pi}{2} \). ### Step 1: Check Continuity at \( x = 0 \) To check continuity at \( x = 0 \), we need to verify that the left-hand limit (LHL) equals the right-hand limit (RHL) and both equal \( f(0) \). - **Left-hand limit (LHL)** as \( x \) approaches \( 0 \) from the left: \[ \text{LHL} = \lim_{x \to 0^-} f(x) = 1 \] - **Right-hand limit (RHL)** as \( x \) approaches \( 0 \) from the right: \[ \text{RHL} = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1 + \sin x) = 1 + \sin(0) = 1 \] - **Value at \( x = 0 \)**: \[ f(0) = 1 + \sin(0) = 1 \] Since LHL = RHL = \( f(0) = 1 \), the function is continuous at \( x = 0 \). ### Step 2: Check Continuity at \( x = \frac{\pi}{2} \) Now, we check continuity at \( x = \frac{\pi}{2} \). - **Left-hand limit (LHL)** as \( x \) approaches \( \frac{\pi}{2} \) from the left: \[ \text{LHL} = \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^-} (1 + \sin x) = 1 + \sin\left(\frac{\pi}{2}\right) = 1 + 1 = 2 \] - **Right-hand limit (RHL)** as \( x \) approaches \( \frac{\pi}{2} \) from the right: \[ \text{RHL} = \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}^+} \left(2 + (x - \frac{\pi}{2})\right) = 2 + \left(\frac{\pi}{2} - \frac{\pi}{2}\right) = 2 \] - **Value at \( x = \frac{\pi}{2} \)**: \[ f\left(\frac{\pi}{2}\right) = 1 + \sin\left(\frac{\pi}{2}\right) = 2 \] Since LHL = RHL = \( f\left(\frac{\pi}{2}\right) = 2 \), the function is continuous at \( x = \frac{\pi}{2} \). ### Step 3: Check Differentiability at \( x = 0 \) To check differentiability at \( x = 0 \), we need to find the left-hand derivative (LHD) and the right-hand derivative (RHD). - **Left-hand derivative (LHD)**: \[ \text{LHD} = \lim_{h \to 0^-} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^-} \frac{(1 + \sin h) - 1}{h} = \lim_{h \to 0^-} \frac{\sin h}{h} = 1 \] - **Right-hand derivative (RHD)**: \[ \text{RHD} = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{(1 + \sin h) - 1}{h} = \lim_{h \to 0^+} \frac{\sin h}{h} = 1 \] Since LHD = RHD = 1, the function is differentiable at \( x = 0 \). ### Step 4: Check Differentiability at \( x = \frac{\pi}{2} \) Now, we check differentiability at \( x = \frac{\pi}{2} \). - **Left-hand derivative (LHD)**: \[ \text{LHD} = \lim_{h \to 0^-} \frac{f\left(\frac{\pi}{2} + h\right) - f\left(\frac{\pi}{2}\right)}{h} = \lim_{h \to 0^-} \frac{(1 + \sin(\frac{\pi}{2} - h)) - 2}{h} = \lim_{h \to 0^-} \frac{(1 + \cos h) - 2}{h} = \lim_{h \to 0^-} \frac{\cos h - 1}{h} \] The limit evaluates to \( -\infty \). - **Right-hand derivative (RHD)**: \[ \text{RHD} = \lim_{h \to 0^+} \frac{f\left(\frac{\pi}{2} + h\right) - f\left(\frac{\pi}{2}\right)}{h} = \lim_{h \to 0^+} \frac{(2 + h) - 2}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1 \] Since LHD \( \neq \) RHD, the function is not differentiable at \( x = \frac{\pi}{2} \). ### Conclusion The function \( f(x) \) is continuous at both \( x = 0 \) and \( x = \frac{\pi}{2} \), but it is not differentiable at \( x = \frac{\pi}{2} \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

Consider f(x)=|1-x|,1 le xle2 and g(x)=f(x)+b sin.(pi)/(2)x, 1 le xle 2 then which of the following is correct?

If 0 le x le pi/2 then

Let f:(0,pi) rarr R be a twice differentiable function such that lim_(t rarr x) (f(x)sint-f(t)sinx)/(t-x) = sin^(2) x for all x in (0,pi) . If f((pi)/(6))=(-(pi)/(12)) then which of the following statement (s) is (are) TRUE?

"If "f(x)={{:(,-x-(pi)/(2),x le -(pi)/(2)),(,-cos x,-(pi)/(2) lt x le 0),(,x-1,0 lt x le 1),(,"In "x,x gt 1):} then which one of the following is not correct?

If f(x)={:{(1+sin x", " 0 le x lt pi//2),(" "1 ", " x lt0):} then show that f'(0) does not exist.

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then

Let f(x)={{:(,x^(3)+x^(2)-10x,-1 le x lt 0),(,cos x,0 le x lt pi/2),(,1+sin x,pi/2 le x le pi):}" Then at "x=pi/2 , f(x) has:

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Prove that the function If f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" ...

    Text Solution

    |

  2. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  3. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  4. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  5. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  6. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |

  7. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  8. Let f(x) ={{:((x-1)^(2) sin (1)/((x-1))-|x|, if x ne 1 ),(-1,if x=1):}...

    Text Solution

    |

  9. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  10. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  11. If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity f...

    Text Solution

    |

  12. Let f(x) = lambda + mu|x| + v |x|^(2) " where " lambda, mu, v are re...

    Text Solution

    |

  13. Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge ...

    Text Solution

    |

  14. Let f: R to R satisfies |f(x)|lex^(2)AAx in R. then show thata f(x)...

    Text Solution

    |

  15. f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], where[.] denotes the greatest ...

    Text Solution

    |

  16. Discuss the continuity of the function f(x) = underset(n rarr oo)(lim)...

    Text Solution

    |

  17. If a function f : [-2a, 2a] rarr R is an odd function such that f(x) =...

    Text Solution

    |

  18. Let f(x+y) = f(x) f(y) and f(x) = 1 + x g(x) G(x) where lim(x->0) g(x)...

    Text Solution

    |

  19. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  20. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |