Home
Class 12
MATHS
f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxl...

`f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}`. If f(x) is defined in (0,3) then ([.] denotes greatest integer function)

A. Point of discontiuity at `x=1, 1/2,2`
B. Point of discontinuity at x=1 and 2
C. Point of non-differentiability at `x=1, 1/2,2`
D. Point of non-differentiability at `x=1, 3/2, 2`

A

Point of discontiuity at `x=1, 1/2,2`

B

Point of discontinuity at x=1 and 2

C

Point of non-differentiability at `x=1, 1/2,2`

D

Point of non-differentiability at `x=1, 3/2, 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined in the intervals \( (0, 3) \). The function is given as: \[ f(x) = \begin{cases} |2x - 3| [x] & \text{for } 0 \leq x < 2 \\ \frac{x^2}{2} & \text{for } 2 < x \leq 3 \end{cases} \] Here, \([x]\) denotes the greatest integer function. ### Step 1: Analyze the first piece of the function \( f(x) \) for \( 0 \leq x < 2 \) 1. **For \( 0 \leq x < 1 \)**: - The greatest integer function \([x] = 0\). - Therefore, \( f(x) = |2x - 3| \cdot 0 = 0 \). 2. **For \( 1 \leq x < 2 \)**: - The greatest integer function \([x] = 1\). - Therefore, \( f(x) = |2x - 3| \cdot 1 = |2x - 3| \). - Now, we need to evaluate \( |2x - 3| \): - At \( x = 1 \): \( |2(1) - 3| = |2 - 3| = 1 \). - At \( x = 2 \): \( |2(2) - 3| = |4 - 3| = 1 \). - The expression \( |2x - 3| \) changes at \( x = 1.5 \): - For \( 1 \leq x < 1.5 \): \( |2x - 3| = 3 - 2x \). - For \( 1.5 < x < 2 \): \( |2x - 3| = 2x - 3 \). ### Step 2: Analyze the second piece of the function \( f(x) \) for \( 2 < x \leq 3 \) - Here, \( f(x) = \frac{x^2}{2} \). - At \( x = 2 \): \( f(2) = \frac{2^2}{2} = 2 \). - At \( x = 3 \): \( f(3) = \frac{3^2}{2} = 4.5 \). ### Step 3: Identify points of discontinuity and non-differentiability 1. **At \( x = 1 \)**: - Left limit: \( f(1^-) = 0 \). - Right limit: \( f(1^+) = 1 \). - Since \( f(1^-) \neq f(1^+) \), there is a discontinuity at \( x = 1 \). 2. **At \( x = 2 \)**: - Left limit: \( f(2^-) = 1 \) (from the first piece). - Right limit: \( f(2^+) = 2 \) (from the second piece). - Since \( f(2^-) \neq f(2^+) \), there is a discontinuity at \( x = 2 \). 3. **At \( x = 1.5 \)**: - The function changes from \( 3 - 2x \) to \( 2x - 3 \). - The left-hand derivative is \( -2 \) and the right-hand derivative is \( 2 \). - Since the left and right derivatives are not equal, \( f(x) \) is non-differentiable at \( x = 1.5 \). ### Conclusion The points of discontinuity are at \( x = 1 \) and \( x = 2 \), and the point of non-differentiability is at \( x = 1, 1.5, 2 \). Thus, the answer is: - **Points of discontinuity**: \( x = 1, 2 \) (Option B). - **Points of non-differentiability**: \( x = 1, 1.5, 2 \) (Option D).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of the function f(x) = x-|x2-x| -1 le x le 1 , where [*] denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where g(x) is discontinuous is

Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2 .

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where g(x) is non - differentiable is

Let f(x) ={{:( [x],-2le xle -(1)/(2) ),( 2x^(2)-1,-(1)/(2)lt xle2):}and g(x) =f(|x|)+|f(x)|, where [.] represents the greatest integer function . the number of point where |f(x)| is non - differentiable is

Statement 1: f(x)=|x-1|+|x-2|+|x-3| has point of minima at x=3. Statement 2: f(x) is non-differentiable at x=3.

If f(x)=x+{-x}+[x] , where [x] and {x} denotes greatest integer function and fractional part function respectively, then find the number of points at which f(x) is both discontinuous and non-differentiable in [-2,2] .

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x...

    Text Solution

    |

  2. If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} ...

    Text Solution

    |

  3. f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}. If f(x) is defined in (...

    Text Solution

    |

  4. Discuss the differentiability of f(x) =[x]+ sqrt({x})), where [.] an...

    Text Solution

    |

  5. If the function and the derivative of the function f(x) is everywhere ...

    Text Solution

    |

  6. If f(x)=[sqrt(2)sinx], where [x] represents the greatest integer funct...

    Text Solution

    |

  7. Let f(x) ={{:((x-1)^(2) sin (1)/((x-1))-|x|, if x ne 1 ),(-1,if x=1):}...

    Text Solution

    |

  8. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  9. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  10. If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity f...

    Text Solution

    |

  11. Let f(x) = lambda + mu|x| + v |x|^(2) " where " lambda, mu, v are re...

    Text Solution

    |

  12. Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge ...

    Text Solution

    |

  13. Let f: R to R satisfies |f(x)|lex^(2)AAx in R. then show thata f(x)...

    Text Solution

    |

  14. f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], where[.] denotes the greatest ...

    Text Solution

    |

  15. Discuss the continuity of the function f(x) = underset(n rarr oo)(lim)...

    Text Solution

    |

  16. If a function f : [-2a, 2a] rarr R is an odd function such that f(x) =...

    Text Solution

    |

  17. Let f(x+y) = f(x) f(y) and f(x) = 1 + x g(x) G(x) where lim(x->0) g(x)...

    Text Solution

    |

  18. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  19. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  20. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |