Home
Class 12
MATHS
If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):}...

If `f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):}` then point of discontinuity fo `f(f(x))` is [0,2] is,

A

`x=1/2`

B

`x=3/2`

C

`x=1`

D

No value of x

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of discontinuity for the function \( f(f(x)) \) where \[ f(x) = \begin{cases} x & \text{if } 0 \leq x \leq 1 \\ 2 - x & \text{if } 1 < x \leq 2 \end{cases} \] we will follow these steps: ### Step 1: Analyze the function \( f(x) \) The function \( f(x) \) is defined piecewise. We can evaluate its behavior at the boundaries of the intervals: - At \( x = 0 \), \( f(0) = 0 \). - At \( x = 1 \), \( f(1) = 1 \). - At \( x = 2 \), \( f(2) = 0 \). ### Step 2: Determine the range of \( f(x) \) - For \( 0 \leq x \leq 1 \), \( f(x) = x \) gives us the range \( [0, 1] \). - For \( 1 < x \leq 2 \), \( f(x) = 2 - x \) gives us the range \( (0, 1] \). Combining these, the overall range of \( f(x) \) for \( x \in [0, 2] \) is \( [0, 1] \). ### Step 3: Find \( f(f(x)) \) Now we need to evaluate \( f(f(x)) \): 1. **For \( x \in [0, 1] \)**: - Here, \( f(x) = x \) which is in the range \( [0, 1] \). - Thus, \( f(f(x)) = f(x) = x \). 2. **For \( x \in (1, 2] \)**: - Here, \( f(x) = 2 - x \) which lies in the interval \( (0, 1] \). - Thus, \( f(f(x)) = f(2 - x) = 2 - x \). ### Step 4: Analyze the continuity of \( f(f(x)) \) Now we need to check the continuity of \( f(f(x)) \): - For \( x \in [0, 1] \), \( f(f(x)) = x \) is continuous. - For \( x \in (1, 2] \), \( f(f(x)) = 2 - x \) is also continuous. ### Step 5: Check the transition at \( x = 1 \) At \( x = 1 \): - From the left: \( f(f(1)) = f(1) = 1 \). - From the right: \( f(f(1)) = f(2 - 1) = f(1) = 1 \). Since both limits equal \( 1 \) at \( x = 1 \), \( f(f(x)) \) is continuous at \( x = 1 \). ### Conclusion Since \( f(f(x)) \) is continuous for all \( x \in [0, 2] \), there are no points of discontinuity in the interval \( [0, 2] \). ### Final Answer The points of discontinuity of \( f(f(x)) \) in the interval \( [0, 2] \) is **none**. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

Let f(x) ={{:(1+x,0lexle2),(3-x,2ltxle3):} then discuss the continuity of g(x) =f(f(x)).

If f(x)=1/((x-1)(x-2)) and g(x)=1/x^2 then points of discontinuity of f(g(x)) are

If f(x)={{:(5x-4",",0ltxle1),(4x^(2)+3ax",",1ltxlt2):}

Number of points of discontinuity of f(x)=tan^2x- sec^2 x in (0,2pi) is

Let g(x) = f(f(x)) where f(x) = { 1 + x ; 0 <=x<=2} and f(x) = {3 - x; 2 < x <= 3} then the number of points of discontinuity of g(x) in [0,3] is :

if f(x) ={{:(x+2 ,if xlt0),(-x^(2)-2 ,if 0le xlt1),( x ,if xge1):} then the number of points of discontinuity of |f(x)|is (a) 1 (b) 2 (c) 3 (d) none of these

Find the points of discontinuity of the function: f(x)=1/(2sinx-1)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. Let f(x) be defined as follows f(x)={(x^(6),x^(2)gt1),(x^(3),x^(2)le1)...

    Text Solution

    |

  2. Let f(x) = {{:((a(1-x sin x)+b cos x + 5)/(x^(2))",",x lt 0),(3",",x =...

    Text Solution

    |

  3. If f(x)={(x,,,0lexle1),(2-x,,,1ltxle2):} then point of discontinuity f...

    Text Solution

    |

  4. Let f(x) = lambda + mu|x| + v |x|^(2) " where " lambda, mu, v are re...

    Text Solution

    |

  5. Let f(x) be a function defined by f(x)={{:(,e^(x),x lt 2),(,a+bx,x ge ...

    Text Solution

    |

  6. Let f: R to R satisfies |f(x)|lex^(2)AAx in R. then show thata f(x)...

    Text Solution

    |

  7. f(x)=[sinx]+[cosx] ,x epsilon [0,2pi], where[.] denotes the greatest ...

    Text Solution

    |

  8. Discuss the continuity of the function f(x) = underset(n rarr oo)(lim)...

    Text Solution

    |

  9. If a function f : [-2a, 2a] rarr R is an odd function such that f(x) =...

    Text Solution

    |

  10. Let f(x+y) = f(x) f(y) and f(x) = 1 + x g(x) G(x) where lim(x->0) g(x)...

    Text Solution

    |

  11. Let f(x) be a continuous defined for 1le xle 3. if f(x) takes ra...

    Text Solution

    |

  12. Let f(x) = [ n + p sin x], x in (0,pi), n in Z, p is a prime number an...

    Text Solution

    |

  13. f(x)=min{1,cosx,1-sinx},-pilexlepi, then

    Text Solution

    |

  14. A function f(x) is defined in the interval [1,4) as follows f(x)={{:(,...

    Text Solution

    |

  15. Discuss the continuity of f(x)=(lim)(n->oo)(x^(2n)-1)/(x^(2n)+1)

    Text Solution

    |

  16. Discuss the continuity of function f(x)={{:(1,"if x is rational"),(...

    Text Solution

    |

  17. Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain ...

    Text Solution

    |

  18. No. of points of discontinuity of [ 2 x^3 - 5] in [1,2] is

    Text Solution

    |

  19. Discuss the differentiability of f(x)=m a x{2sinx ,1-cosx}AAx in (0,...

    Text Solution

    |

  20. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |