Home
Class 12
MATHS
(tanx)^(y)=(tany)^(x) find dy/dx...

`(tanx)^(y)=(tany)^(x)` find dy/dx

A

`(log(tany))/(lot(tanx))`

B

`(lot(tany)-1)/(2log(tanx))`

C

`lot(tany)-(2y)/(2sin2x)`

D

`(lot(tany)-2ycosec2x)/(log(tanx)-2x cosec 2y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\tan x)^y = (\tan y)^x\) and find \(\frac{dy}{dx}\), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \log((\tan x)^y) = \log((\tan y)^x) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms that states \(\log(a^b) = b \log(a)\), we can rewrite the equation as: \[ y \log(\tan x) = x \log(\tan y) \] ### Step 3: Differentiate both sides with respect to \(x\) Now, we differentiate both sides with respect to \(x\). We will use the product rule on both sides. The left-hand side becomes: \[ \frac{d}{dx}(y \log(\tan x)) = \frac{dy}{dx} \log(\tan x) + y \cdot \frac{d}{dx}(\log(\tan x)) \] Using the chain rule, we find: \[ \frac{d}{dx}(\log(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] So, the left-hand side becomes: \[ \frac{dy}{dx} \log(\tan x) + y \cdot \frac{\sec^2 x}{\tan x} \] The right-hand side becomes: \[ \frac{d}{dx}(x \log(\tan y)) = \log(\tan y) + x \cdot \frac{d}{dx}(\log(\tan y)) \] Using the chain rule again, we have: \[ \frac{d}{dx}(\log(\tan y)) = \frac{1}{\tan y} \cdot \sec^2 y \cdot \frac{dy}{dx} \] Thus, the right-hand side becomes: \[ \log(\tan y) + x \cdot \frac{\sec^2 y}{\tan y} \cdot \frac{dy}{dx} \] ### Step 4: Set the derivatives equal Now we set the two sides equal to each other: \[ \frac{dy}{dx} \log(\tan x) + y \cdot \frac{\sec^2 x}{\tan x} = \log(\tan y) + x \cdot \frac{\sec^2 y}{\tan y} \cdot \frac{dy}{dx} \] ### Step 5: Collect \(\frac{dy}{dx}\) terms Rearranging gives: \[ \frac{dy}{dx} \log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y} \cdot \frac{dy}{dx} = \log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x} \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left( \log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y} \right) = \log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Finally, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x}}{\log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y}} \] ### Summary of the solution Thus, the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{\log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x}}{\log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

If x^y=y^x , find (dy)/(dx) .

If y=x e^x , find dy/dx

y=(tanx)^(logx)+(cosx)^(sinx) , find dy/dx

If x^y=y^x ,then find (dy)/(dx)

If y=(tanx)^((tanx)^((tanx).... ∞) ,then find (dy)/(dx) at x=pi/4

If y=x^(x) then Find (dy)/(dx)

If y=(tanx)^(logx)+cos^2(pi/4) , find (dy)/(dx)

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If f(x+y)=f(x)f(y) for all x and y and f(X)=1+g(x)G(x) where lim(xto 0...

    Text Solution

    |

  2. f(x)={|x+1|;xlt=0x ;x >0 and g(x)={|x|+1;xlt=1-|x-2|;x >1 Draw its g...

    Text Solution

    |

  3. (tanx)^(y)=(tany)^(x) find dy/dx

    Text Solution

    |

  4. If f(x+2)=(x+3)^(2)-2x, then f(x)=

    Text Solution

    |

  5. Solve : log4(log3(log2x))=0

    Text Solution

    |

  6. If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(...

    Text Solution

    |

  7. If y =tan ^(-1)((x ^(1//3) -a^(1//3))/(1+x ^(1//3)a ^(1//3))), x gt 0,...

    Text Solution

    |

  8. If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

    Text Solution

    |

  9. Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to

    Text Solution

    |

  10. If f' (x) = sin (log x) and y = f((2x+3)/(3- 2x)), " then " (dy)/(...

    Text Solution

    |

  11. If y=sin^(-1)(cos x)+cos^(-1)(sin x), prove that (dy)/(dx)=-2

    Text Solution

    |

  12. If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2)...

    Text Solution

    |

  13. If u=3x^(12) and v=x^(6) then (du)/(dv) is

    Text Solution

    |

  14. If x=e^(-t^(2)), y=tan^(-1)(2t+1), then (dy)/(dx)=

    Text Solution

    |

  15. If x^y y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

    Text Solution

    |

  16. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  17. Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi). Then set of points of ...

    Text Solution

    |

  18. Differential coefficient of (x^((1+m)/(m-n)))^((1)/(n-1)).(x^((m+n)/(l...

    Text Solution

    |

  19. Let f (x) be a polynomial in x. The second derivative of f (e ^(x)) w...

    Text Solution

    |

  20. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |