Home
Class 12
MATHS
If x^2+x y+y^2=7/4, then (dy)/(dx) at x=...

If `x^2+x y+y^2=7/4,` then `(dy)/(dx)` at `x=1` and `y=1/2` is:

A

`3/4`

B

`(-5)/4`

C

`21/8`

D

`(-21)/8`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at the point \(x = 1\) and \(y = \frac{1}{2}\) for the equation \(x^2 + xy + y^2 = \frac{7}{4}\), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ x^2 + xy + y^2 = \frac{7}{4} \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}\left(\frac{7}{4}\right) \] ### Step 2: Apply differentiation rules The differentiation of each term gives: - For \(x^2\), the derivative is \(2x\). - For \(xy\), we use the product rule: \(\frac{d}{dx}(xy) = x\frac{dy}{dx} + y\). - For \(y^2\), we use the chain rule: \(\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}\). - The derivative of a constant \(\frac{7}{4}\) is \(0\). Putting it all together, we have: \[ 2x + \left(x\frac{dy}{dx} + y\right) + 2y\frac{dy}{dx} = 0 \] ### Step 3: Rearranging the equation Now, we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ 2x + y + \left(x + 2y\right)\frac{dy}{dx} = 0 \] \[ \left(x + 2y\right)\frac{dy}{dx} = - (2x + y) \] \[ \frac{dy}{dx} = -\frac{2x + y}{x + 2y} \] ### Step 4: Substitute the values of \(x\) and \(y\) Now we substitute \(x = 1\) and \(y = \frac{1}{2}\) into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{2(1) + \frac{1}{2}}{1 + 2\left(\frac{1}{2}\right)} \] ### Step 5: Simplifying the expression Calculating the numerator: \[ 2(1) + \frac{1}{2} = 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} \] Calculating the denominator: \[ 1 + 2\left(\frac{1}{2}\right) = 1 + 1 = 2 \] So, we have: \[ \frac{dy}{dx} = -\frac{\frac{5}{2}}{2} = -\frac{5}{4} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = 1\) and \(y = \frac{1}{2}\) is: \[ \frac{dy}{dx} = -\frac{5}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

if 2^x+2^y=2^(x+y) then the value of (dy)/(dx) at x=y=1

(i) If y= (x-1)/( 2x^(2) - 7x +5) , find (dy)/( dx) at x=2 .

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b

If y=(x^4+x^2+1)/(x^2+x+1) then (dy)/(dx)=a x+b , find a and b

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(...

    Text Solution

    |

  2. If y =tan ^(-1)((x ^(1//3) -a^(1//3))/(1+x ^(1//3)a ^(1//3))), x gt 0,...

    Text Solution

    |

  3. If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

    Text Solution

    |

  4. Let y=sqrt(x+sqrt(x+sqrt(x+...oo)))," then "(dy)/(dx) is equal to

    Text Solution

    |

  5. If f' (x) = sin (log x) and y = f((2x+3)/(3- 2x)), " then " (dy)/(...

    Text Solution

    |

  6. If y=sin^(-1)(cos x)+cos^(-1)(sin x), prove that (dy)/(dx)=-2

    Text Solution

    |

  7. If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2)...

    Text Solution

    |

  8. If u=3x^(12) and v=x^(6) then (du)/(dv) is

    Text Solution

    |

  9. If x=e^(-t^(2)), y=tan^(-1)(2t+1), then (dy)/(dx)=

    Text Solution

    |

  10. If x^y y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

    Text Solution

    |

  11. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  12. Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi). Then set of points of ...

    Text Solution

    |

  13. Differential coefficient of (x^((1+m)/(m-n)))^((1)/(n-1)).(x^((m+n)/(l...

    Text Solution

    |

  14. Let f (x) be a polynomial in x. The second derivative of f (e ^(x)) w...

    Text Solution

    |

  15. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  16. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  17. If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(...

    Text Solution

    |

  18. Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

    Text Solution

    |

  19. If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) satisfy f(x)((dy)/(dx))^(3)=...

    Text Solution

    |

  20. The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1...

    Text Solution

    |