Home
Class 12
MATHS
Let f(x)=m ax{2 sin x,1-cosx},x epsilon ...

Let `f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi)`. Then set of points of non differentiability is

A

`phi`

B

`{(pi)/2}`

C

`{pi-"cos"^(-1)3/5}`

D

`{"cos"^(-1)3/5}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the set of points of non-differentiability for the function \( f(x) = \max(2 \sin x, 1 - \cos x) \) for \( x \in (0, \pi) \), we will follow these steps: ### Step 1: Identify the two functions The function \( f(x) \) is defined as the maximum of two functions: 1. \( g_1(x) = 2 \sin x \) 2. \( g_2(x) = 1 - \cos x \) ### Step 2: Find the points of intersection To determine where \( f(x) \) may not be differentiable, we need to find the points where \( g_1(x) = g_2(x) \): \[ 2 \sin x = 1 - \cos x \] ### Step 3: Rearranging the equation Rearranging the equation gives: \[ 2 \sin x + \cos x - 1 = 0 \] ### Step 4: Solve the equation To solve \( 2 \sin x + \cos x - 1 = 0 \), we can express \( \sin x \) in terms of \( \cos x \): 1. Isolate \( \cos x \): \[ \cos x = 1 - 2 \sin x \] 2. Substitute \( \cos^2 x + \sin^2 x = 1 \): \[ (1 - 2 \sin x)^2 + \sin^2 x = 1 \] Expanding this: \[ 1 - 4 \sin x + 4 \sin^2 x + \sin^2 x = 1 \] Simplifying: \[ 5 \sin^2 x - 4 \sin x = 0 \] Factoring out \( \sin x \): \[ \sin x (5 \sin x - 4) = 0 \] Thus, \( \sin x = 0 \) or \( 5 \sin x - 4 = 0 \). ### Step 5: Find the solutions 1. \( \sin x = 0 \) gives \( x = 0 \) (not in the interval \( (0, \pi) \)). 2. \( 5 \sin x - 4 = 0 \) gives: \[ \sin x = \frac{4}{5} \] This gives \( x = \sin^{-1} \left( \frac{4}{5} \right) \) which is valid in the interval \( (0, \pi) \). ### Step 6: Check the endpoints The function \( f(x) \) could also be non-differentiable at the endpoints of the interval, but since we are considering \( (0, \pi) \), we focus on the intersection point. ### Step 7: Identify non-differentiable points The point of non-differentiability occurs at the intersection point found: \[ x = \sin^{-1} \left( \frac{4}{5} \right) \] ### Conclusion Thus, the set of points of non-differentiability for the function \( f(x) \) is: \[ \left\{ \sin^{-1} \left( \frac{4}{5} \right) \right\} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

The set of points where f(x)=x/(1+|x|) is differentiable is

The number of points where f(x) = max {|sin x| , | cos x|} , x in ( -2 pi , 2 pi ) is not differentiable is ______

Let f(x) = sin x (1+cos x) , x in (0,2pi). Find the number of critical points of f(x) . Also identify which of these critical points are points of Maxima // Minima.

If f(x)=max{tanx, sin x, cos x} where x in [-(pi)/(2),(3pi)/(2)) then the number of points, where f(x) is non -differentiable, is

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

Let f(x) = {x-1)^2 sin(1/(x-1)-|x| ,if x!=1 and -1, if x=1 1valued function. Then, the set of pointsf, where f(x) is not differentiable, is .... .

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Find the values of x where function f(X)m = (sin x + cosx)(e^(x)) in (0,2pi) has point of inflection

Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda is the number of points at which f(x) is non - differentiable , then value of (lamda^3)/5 is

Let f(x) = [ n + p sin x], x in (0,pi), n in Z , p is a prime number and [x] = the greatest integer less than or equal to x. The number of points at which f(x) is not not differentiable is :

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2)...

    Text Solution

    |

  2. If u=3x^(12) and v=x^(6) then (du)/(dv) is

    Text Solution

    |

  3. If x=e^(-t^(2)), y=tan^(-1)(2t+1), then (dy)/(dx)=

    Text Solution

    |

  4. If x^y y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

    Text Solution

    |

  5. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  6. Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi). Then set of points of ...

    Text Solution

    |

  7. Differential coefficient of (x^((1+m)/(m-n)))^((1)/(n-1)).(x^((m+n)/(l...

    Text Solution

    |

  8. Let f (x) be a polynomial in x. The second derivative of f (e ^(x)) w...

    Text Solution

    |

  9. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  10. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  11. If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(...

    Text Solution

    |

  12. Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

    Text Solution

    |

  13. If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) satisfy f(x)((dy)/(dx))^(3)=...

    Text Solution

    |

  14. The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1...

    Text Solution

    |

  15. Let f(x)=x+1/(2x+1/(2x+1/(2x+...…...oo))) Compute the value of f...

    Text Solution

    |

  16. Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

    Text Solution

    |

  17. If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim(xto alph...

    Text Solution

    |

  18. lim(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([-pi^(2)]))/(sin^(2)x) equals (...

    Text Solution

    |

  19. underset(xtooo)lim(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal ...

    Text Solution

    |

  20. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |