Home
Class 12
MATHS
Let f(x)=x+1/(2x+1/(2x+1/(2x+...…...oo...

Let `f(x)=x+1/(2x+1/(2x+1/(2x+...…...oo)))`
Compute the value of `f(100)dotf^(prime)(100)`

A

0

B

100

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the value of \( f(100) \cdot f'(100) \) where \[ f(x) = x + \frac{1}{2x + \frac{1}{2x + \frac{1}{2x + \ldots}}} \] ### Step 1: Define the function We start by recognizing that the infinite nested fraction can be represented as \( f(x) \). Thus, we can write: \[ f(x) = x + \frac{1}{f(x)} \] ### Step 2: Rearranging the equation Rearranging the equation gives us: \[ f(x) - x = \frac{1}{f(x)} \] ### Step 3: Cross-multiplying Cross-multiplying gives us: \[ (f(x) - x) f(x) = 1 \] ### Step 4: Expanding the equation Expanding the left side, we have: \[ f(x)^2 - x f(x) = 1 \] ### Step 5: Rearranging into standard form Rearranging this into standard quadratic form, we get: \[ f(x)^2 - x f(x) - 1 = 0 \] ### Step 6: Using the quadratic formula We can solve this quadratic equation for \( f(x) \) using the quadratic formula: \[ f(x) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -x, c = -1 \). Thus: \[ f(x) = \frac{x \pm \sqrt{x^2 + 4}}{2} \] ### Step 7: Choosing the correct root Since \( f(x) \) must be positive for positive \( x \), we take the positive root: \[ f(x) = \frac{x + \sqrt{x^2 + 4}}{2} \] ### Step 8: Differentiate \( f(x) \) Now, we need to differentiate \( f(x) \): \[ f'(x) = \frac{1}{2} \left( 1 + \frac{d}{dx}(\sqrt{x^2 + 4}) \right) \] Using the chain rule on \( \sqrt{x^2 + 4} \): \[ \frac{d}{dx}(\sqrt{x^2 + 4}) = \frac{1}{2\sqrt{x^2 + 4}} \cdot 2x = \frac{x}{\sqrt{x^2 + 4}} \] Thus, \[ f'(x) = \frac{1}{2} \left( 1 + \frac{x}{\sqrt{x^2 + 4}} \right) \] ### Step 9: Compute \( f(100) \) and \( f'(100) \) Now we compute \( f(100) \): \[ f(100) = \frac{100 + \sqrt{100^2 + 4}}{2} = \frac{100 + \sqrt{10000 + 4}}{2} = \frac{100 + \sqrt{10004}}{2} \] And \( f'(100) \): \[ f'(100) = \frac{1}{2} \left( 1 + \frac{100}{\sqrt{100^2 + 4}} \right) = \frac{1}{2} \left( 1 + \frac{100}{\sqrt{10004}} \right) \] ### Step 10: Compute \( f(100) \cdot f'(100) \) Now, we compute \( f(100) \cdot f'(100) \): From our earlier derivation, we know: \[ f(x) \cdot f'(x) = x \] Thus, \[ f(100) \cdot f'(100) = 100 \] ### Final Answer The value of \( f(100) \cdot f'(100) \) is \[ \boxed{100} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x+1/(2x+1/(2x+1/(2x+oo))) Compute the value of f(50)dotf^(prime)(50)

"Let "f(x)=x + (1)/(2x + (1)/(2x + (1)/(2x + .....oo))). Then the value of f(50)cdot f'(50) is -

Let f(x)=x+1/(2x+1/(2x+1/(2x))) Compute the value of f(5) .

If f(x)=(1-s in2x+cos2x)/(2cos2x) , then the value of f(16^0)dotf(29^0) is 1/2 1/4 1 3/4

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the value of (f'(101))/(f(101)) is

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is:

Let f(x)= 2^(2x−1) and ϕ(x) = −2^x+2xlog2 . If f'(x)>ϕ'(x), then value of x is-

Let ("lim")_(xvec1)(x^a-a x+a-1)/((x-1)^2)=f(a)dot Then the value of f(4) is _________

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2)...

    Text Solution

    |

  2. If u=3x^(12) and v=x^(6) then (du)/(dv) is

    Text Solution

    |

  3. If x=e^(-t^(2)), y=tan^(-1)(2t+1), then (dy)/(dx)=

    Text Solution

    |

  4. If x^y y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

    Text Solution

    |

  5. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  6. Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi). Then set of points of ...

    Text Solution

    |

  7. Differential coefficient of (x^((1+m)/(m-n)))^((1)/(n-1)).(x^((m+n)/(l...

    Text Solution

    |

  8. Let f (x) be a polynomial in x. The second derivative of f (e ^(x)) w...

    Text Solution

    |

  9. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  10. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  11. If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(...

    Text Solution

    |

  12. Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

    Text Solution

    |

  13. If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) satisfy f(x)((dy)/(dx))^(3)=...

    Text Solution

    |

  14. The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1...

    Text Solution

    |

  15. Let f(x)=x+1/(2x+1/(2x+1/(2x+...…...oo))) Compute the value of f...

    Text Solution

    |

  16. Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

    Text Solution

    |

  17. If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim(xto alph...

    Text Solution

    |

  18. lim(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([-pi^(2)]))/(sin^(2)x) equals (...

    Text Solution

    |

  19. underset(xtooo)lim(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal ...

    Text Solution

    |

  20. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |