Home
Class 12
MATHS
lim(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([...

`lim_(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([-pi^(2)]))/(sin^(2)x)` equals (where [.] denotes the greater ineteger function)

A

0

B

1

C

`tan 10 -10`

D

`oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0} \frac{\tan(\lfloor -\pi^2 \rfloor x^2) - x^2 \tan(\lfloor -\pi^2 \rfloor)}{\sin^2 x}, \] we will follow these steps: ### Step 1: Identify the value of \(\lfloor -\pi^2 \rfloor\) First, we need to find the value of \(\lfloor -\pi^2 \rfloor\). Since \(\pi^2 \approx 9.87\), we have: \[ -\pi^2 \approx -9.87 \implies \lfloor -\pi^2 \rfloor = -10. \] ### Step 2: Substitute \(\lfloor -\pi^2 \rfloor\) into the limit Now we substitute \(-10\) into the limit: \[ \lim_{x \to 0} \frac{\tan(-10 x^2) - x^2 \tan(-10)}{\sin^2 x}. \] ### Step 3: Use the small angle approximation for \(\tan\) For small values of \(x\), we can use the approximation \(\tan(y) \approx y\) when \(y\) is small. Thus, we have: \[ \tan(-10 x^2) \approx -10 x^2. \] ### Step 4: Substitute the approximation into the limit Substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{-10 x^2 - x^2 \tan(-10)}{\sin^2 x}. \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ -10 x^2 - x^2 \tan(-10) = -x^2 (10 + \tan(-10)). \] ### Step 6: Use the limit for \(\sin^2 x\) As \(x\) approaches \(0\), we can use the fact that \(\sin x \approx x\), thus: \[ \sin^2 x \approx x^2. \] ### Step 7: Substitute \(\sin^2 x\) into the limit Now, substituting this into our limit gives: \[ \lim_{x \to 0} \frac{-x^2 (10 + \tan(-10))}{x^2}. \] ### Step 8: Cancel \(x^2\) We can cancel \(x^2\) from the numerator and denominator: \[ \lim_{x \to 0} - (10 + \tan(-10)). \] ### Step 9: Evaluate the limit Since there are no terms involving \(x\) left, we can directly evaluate the limit: \[ -(10 + \tan(-10)). \] ### Step 10: Calculate \(\tan(-10)\) Since \(\tan(-10) = -\tan(10)\), we have: \[ -(10 - \tan(10)). \] ### Final Result Thus, the final result is: \[ \tan(10) - 10. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where ninN and [.] denotes the greatest integer function, equals

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL -1
  1. If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2)...

    Text Solution

    |

  2. If u=3x^(12) and v=x^(6) then (du)/(dv) is

    Text Solution

    |

  3. If x=e^(-t^(2)), y=tan^(-1)(2t+1), then (dy)/(dx)=

    Text Solution

    |

  4. If x^y y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

    Text Solution

    |

  5. If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equa...

    Text Solution

    |

  6. Let f(x)=m ax{2 sin x,1-cosx},x epsilon (0,pi). Then set of points of ...

    Text Solution

    |

  7. Differential coefficient of (x^((1+m)/(m-n)))^((1)/(n-1)).(x^((m+n)/(l...

    Text Solution

    |

  8. Let f (x) be a polynomial in x. The second derivative of f (e ^(x)) w...

    Text Solution

    |

  9. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  10. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  11. If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(...

    Text Solution

    |

  12. Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

    Text Solution

    |

  13. If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) satisfy f(x)((dy)/(dx))^(3)=...

    Text Solution

    |

  14. The derivative of sin^(-1)((2x)/(1+x^(2))) with respect to cos^(-1)((1...

    Text Solution

    |

  15. Let f(x)=x+1/(2x+1/(2x+1/(2x+...…...oo))) Compute the value of f...

    Text Solution

    |

  16. Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

    Text Solution

    |

  17. If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim(xto alph...

    Text Solution

    |

  18. lim(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([-pi^(2)]))/(sin^(2)x) equals (...

    Text Solution

    |

  19. underset(xtooo)lim(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal ...

    Text Solution

    |

  20. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |