Home
Class 12
MATHS
Let g be the inverse function of f and f...

Let `g` be the inverse function of `f and f'(x)=(x^(10))/(1+x^(2)).` If `f(2)=a` then `g'(2)` is equal to

A

`1/(2^(10))`

B

`(1+a^(2))/(a^(10))`

C

`(a^(10))/(1+a^(2))`

D

`(1+a^(10))/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g'(2) \) where \( g \) is the inverse function of \( f \) and \( f'(x) = \frac{x^{10}}{1+x^2} \). We also know that \( f(2) = a \). ### Step-by-Step Solution: 1. **Understand the relationship between \( f \) and \( g \)**: Since \( g \) is the inverse of \( f \), we have: \[ f(g(x)) = x \] Differentiating both sides with respect to \( x \): \[ f'(g(x)) \cdot g'(x) = 1 \] This implies: \[ g'(x) = \frac{1}{f'(g(x))} \] 2. **Evaluate \( g(2) \)**: We know that \( f(2) = a \), which means: \[ g(2) = f^{-1}(2) = a \] 3. **Substitute \( g(2) \) into the derivative formula**: We need to find \( g'(2) \): \[ g'(2) = \frac{1}{f'(g(2))} = \frac{1}{f'(a)} \] 4. **Calculate \( f'(a) \)**: We have \( f'(x) = \frac{x^{10}}{1+x^2} \). Therefore: \[ f'(a) = \frac{a^{10}}{1+a^2} \] 5. **Substitute \( f'(a) \) back into the expression for \( g'(2) \)**: \[ g'(2) = \frac{1}{f'(a)} = \frac{1}{\frac{a^{10}}{1+a^2}} = \frac{1+a^2}{a^{10}} \] 6. **Final expression for \( g'(2) \)**: Thus, we have: \[ g'(2) = \frac{1 + a^2}{a^{10}} \] ### Final Answer: \[ g'(2) = \frac{1 + a^2}{a^{10}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If g(2)=a then g'(2) is equal to

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

Let g be the inverse function of a differentiable function f and G (x) =(1)/(g (x)). If f (4) =2 and f '(4) =(1)/(16), then the value of (G'(2))^(2) equals to:

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)) .Find g'(x) in terms of g(x).

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be the inverse of f (x) =(2 ^(x+1)-2^(1-x))/(2 ^(x)+2 ^(-x)) then g (x) be :

Let f(x)=x+ sin x . Suppose g denotes the inverse function of f. The value of g'(pi/4+1/sqrt2) has the value equal to

Let f(x)=x+ sin x . Suppose g denotes the inverse function of f. The value of g'(pi/4+1/sqrt2) has the value equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-LEVEL 2
  1. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  2. If f(x)=-1+|x-2|,0lexle4 g(x)=2-|x|,-1lexle3 Then find fog(x) and ...

    Text Solution

    |

  3. Let g be the inverse function of f and f'(x)=(x^(10))/(1+x^(2)). If f(...

    Text Solution

    |

  4. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  5. Let f(x) = sqrt(x - 1)+sqrt(x+ 24 - 10sqrt(x-1)), 1 lt x lt 26 be a re...

    Text Solution

    |

  6. If f(x)=(|x|)^(|sinx|), then f'(-pi//4) is equal to

    Text Solution

    |

  7. If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

    Text Solution

    |

  8. Equation x^(n)-1=0, ngt1, n in N," has roots "1,a(1),a(2),…,a(n-1). ...

    Text Solution

    |

  9. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  10. Equation x^(n)-1=0,ngt1,ninN, has roots 1,a(1),a(2),...,a(n),. The val...

    Text Solution

    |

  11. underset(xto0)lim[(1-e^(x))(sinx)/(|x|)] is (where [.] represents the ...

    Text Solution

    |

  12. Indicate all correct alternatives: if f(x) = x/2-1, then on the interv...

    Text Solution

    |

  13. Let function f be defined as f:R^(+)toR^(+) and function g is defined ...

    Text Solution

    |

  14. If f(x)={(2cos x ,s in2x)/((pi-2x)^2),xlt=pi/2(e^(-cotx)-1)/(8x-4pi),x...

    Text Solution

    |

  15. If f(x) = {{:(b([x]^(2)+[x])+1",","for",x gt -1),(sin(pi(x + a))",","f...

    Text Solution

    |

  16. Show that the function f(x)={x^m sin(1/x) , 0 ,x != 0,x=0 is different...

    Text Solution

    |

  17. {:(f(x) = cos x and H(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)...

    Text Solution

    |

  18. Consider f(x)=[[2(sinx-sin^3x)+|sinx-sin^3 x|)/(2(sinx-sin^3 x)-|sinx...

    Text Solution

    |

  19. Consider the function f(x) = {{:(x{x}+1",","if",0 le x lt 1),(2-{x}","...

    Text Solution

    |

  20. Let f(x) = max{|x^2 - 2 |x||,|x|} and g(x) = min{|x^2 - 2|x||, |x|} th...

    Text Solution

    |