Home
Class 12
MATHS
(d^2 x)/(dy^2) is equal to :...

`(d^2 x)/(dy^2)` is equal to :

A

`-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-30`

B

`((d^(2)y)/(dx^(2)))((dy)/(dx))^(-2)`

C

`-((d^(2)y)/(dx^(2)))((dy)/(dx))^(-3)`

D

`((d^(2)y)/(dx^(2)))^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \(\frac{d^2 x}{dy^2}\), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Start with the relationship**: We know that \(\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}\). This means that the derivative of \(x\) with respect to \(y\) is the reciprocal of the derivative of \(y\) with respect to \(x\). \[ \frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1} \] **Hint**: Remember that the derivative of one variable with respect to another can often be expressed as the reciprocal of the derivative in the opposite direction. 2. **Differentiate both sides with respect to \(y\)**: We will differentiate \(\frac{dx}{dy}\) with respect to \(y\). \[ \frac{d^2x}{dy^2} = \frac{d}{dy}\left(\left(\frac{dy}{dx}\right)^{-1}\right) \] **Hint**: When differentiating a function that is raised to a power, use the chain rule. 3. **Apply the chain rule**: Using the chain rule, we differentiate \(\left(\frac{dy}{dx}\right)^{-1}\). \[ \frac{d^2x}{dy^2} = -\left(\frac{dy}{dx}\right)^{-2} \cdot \frac{d}{dy}\left(\frac{dy}{dx}\right) \] **Hint**: The derivative of \(u^{-1}\) is \(-u^{-2} \cdot \frac{du}{dy}\). 4. **Express \(\frac{d}{dy}\left(\frac{dy}{dx}\right)\)**: We can express \(\frac{d}{dy}\left(\frac{dy}{dx}\right)\) using the chain rule again. \[ \frac{d}{dy}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} \cdot \frac{dx}{dy} \] **Hint**: When differentiating \(\frac{dy}{dx}\) with respect to \(y\), apply the chain rule to express it in terms of \(\frac{d^2y}{dx^2}\). 5. **Substitute back into the equation**: Now substitute this expression back into the equation for \(\frac{d^2x}{dy^2}\). \[ \frac{d^2x}{dy^2} = -\left(\frac{dy}{dx}\right)^{-2} \cdot \left(\frac{d^2y}{dx^2} \cdot \frac{dx}{dy}\right) \] 6. **Simplify the expression**: We know that \(\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}\), so we can substitute this into our equation. \[ \frac{d^2x}{dy^2} = -\left(\frac{dy}{dx}\right)^{-2} \cdot \left(\frac{d^2y}{dx^2} \cdot \left(\frac{dy}{dx}\right)^{-1}\right) \] This simplifies to: \[ \frac{d^2x}{dy^2} = -\frac{d^2y}{dx^2} \cdot \left(\frac{dy}{dx}\right)^{-3} \] **Hint**: When simplifying, pay attention to how powers of the same base can be combined. 7. **Final Result**: Thus, we have: \[ \frac{d^2x}{dy^2} = -\frac{d^2y}{dx^2} \cdot \left(\frac{dy}{dx}\right)^{-3} \] ### Conclusion: The final expression for \(\frac{d^2x}{dy^2}\) is: \[ \frac{d^2x}{dy^2} = -\frac{d^2y}{dx^2} \cdot \left(\frac{dy}{dx}\right)^{-3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is equal to

Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is equal to:

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE main (Archive)
  1. Consider the function f(x)=|x-2|+|x-5|,x in R . Statement 1: f'(4)=0 ...

    Text Solution

    |

  2. Show that the underset(xto2)lim((sqrt(1-cos{2(x-2)}))/(x-2)) doesnot e...

    Text Solution

    |

  3. (d^2 x)/(dy^2) is equal to :

    Text Solution

    |

  4. The value of p and q for which the function f(x)""={(sin(p+1)x+sinx)/x...

    Text Solution

    |

  5. If f(x) is differentiable at x=a , find (lim)(x->a)(x^2f(a)-a^2\ f(x))...

    Text Solution

    |

  6. Define f(x) as the product of two real functions f(1)(x)=x, x epsilon ...

    Text Solution

    |

  7. Let f:""(-1,""1) rarr R be a differentiable function with f(0)""=""-...

    Text Solution

    |

  8. Let f :RtoR be a positive, increasing function with underset(xtooo)l...

    Text Solution

    |

  9. Let y be an implicit function of x defined by x^(2x)-2x^(x) cot y-1=0...

    Text Solution

    |

  10. Let f(x)""=""x|x|""and""g(x)""=""sinx in x Statement 1 : gof is d...

    Text Solution

    |

  11. Let f(x)={(x-1)sin1/(x-1)if\ x!=1 0,\ if\ x=1 . Then which one of th...

    Text Solution

    |

  12. Show that f(x) =tan^(-1)(sinx+cosx) is an increasing function in (0,pi...

    Text Solution

    |

  13. Let f: R to R be a function defined byf(x)="min" {x+1,|x|+1}. Then, wh...

    Text Solution

    |

  14. If the function F : R \\{0} to R "given by "f(x) =(1)/(x)-(2) /(e^(...

    Text Solution

    |

  15. The set of points where f(x) = x/(1+ |x|) is differentiable is

    Text Solution

    |

  16. If x^m y^n=(x+y)^(m+n), prove that (dy)/(dx)=y/x .

    Text Solution

    |

  17. Suppose f (x) is differentiable at x=1 and lim (h to0) (f(1+h))/(h) =5...

    Text Solution

    |

  18. Let f be differentiable for all x , If f(1)=-2a n df^(prime)(x)geq2 fo...

    Text Solution

    |

  19. If f is a real- valued differentiable function satisfying |f(x) - f(y)...

    Text Solution

    |

  20. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |