Home
Class 12
MATHS
L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in...

`L e t` `f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2],` If`f(x)i s` continuous in `[0,pi/4],` then find the value of `f(pi/4)dot`

A

1

B

`1//2`

C

`-1//2`

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is continuous at x=(pi)/(4) then the value of k is

Let f (x)= {{:((1- tan x)/(4x-pi), x ne (pi)/(4)),( lamda, x =(pi)/(4)):}, x in [0, (pi)/(2)), If f (x) is continuous in [0, (pi)/(2)) then lamda is equal to:

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If f(x) = (tanx)/(x-pi) , then lim_(xrarr(pi))f(x)= ……………….

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)=(tan(pi/4+(log)_e x))^((log)_x e) is to be made continuous at x=1, then what is the value of f(1)?

If f(x)=(sqrt(2)cosx-1)/(cotx-1),x!=pi/4dot Find the value of f(pi/4) so that f(x) becomes continuous at x=pi/4dot

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE main (Archive)
  1. Suppose f (x) is differentiable at x=1 and lim (h to0) (f(1+h))/(h) =5...

    Text Solution

    |

  2. Let f be differentiable for all x , If f(1)=-2a n df^(prime)(x)geq2 fo...

    Text Solution

    |

  3. If f is a real- valued differentiable function satisfying |f(x) - f(y)...

    Text Solution

    |

  4. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  5. If lim(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and ...

    Text Solution

    |

  6. L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], Iff(x)i s continuou...

    Text Solution

    |

  7. If x=e^(y+e^(y+e^(y+...oo))),xgt0, then (dy)/(dx) is equal to

    Text Solution

    |

  8. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  9. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  10. lim (xto (pi)/(2))((1- tan ""(x )/(2))(1-sinx))/((1+ tan ""(x)/(2 ))(x...

    Text Solution

    |

  11. If lim(xto0) (log (3+x)-log (3-x))/(x)=k, the value of k is

    Text Solution

    |

  12. Let f(a)=g(a)=k and their nth derivatives exist and be not equal for s...

    Text Solution

    |

  13. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  14. If y (x+ sqrt(1+x ^(2)))^(n) then (1+ x ^(2) ) (d^(2)y)/(dx ^(2)) +x (...

    Text Solution

    |

  15. lim(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

    Text Solution

    |

  16. lim(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

    Text Solution

    |

  17. If siny=xsin(a+y) , then (dy)/(dx) is (a)(sina)/(sina sin^2(a+y)) (...

    Text Solution

    |

  18. If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

    Text Solution

    |

  19. Evaluate lim(xtooo)((x-3)/(x+2))^(x)

    Text Solution

    |

  20. Let f (2) = 4 f(2) = 4 Then Lt(x to 2) (x f(2) -2 f(x))/(x -2) is

    Text Solution

    |