Home
Class 12
MATHS
lim(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))...

`lim_(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x)` is equal to

A

`e^(4)`

B

`e^(2)`

C

`e^(3)`

D

`e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x \), we will follow these steps: ### Step 1: Identify the Form of the Limit First, we need to analyze the expression inside the limit as \( x \) approaches infinity. We can rewrite the limit as: \[ \lim_{x \to \infty} \left( \frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x \] ### Step 2: Simplify the Fraction To simplify the fraction, we divide both the numerator and the denominator by \( x^2 \): \[ \frac{x^2 + 5x + 3}{x^2 + x + 3} = \frac{1 + \frac{5}{x} + \frac{3}{x^2}}{1 + \frac{1}{x} + \frac{3}{x^2}} \] ### Step 3: Evaluate the Limit of the Fraction Now, as \( x \) approaches infinity, the terms \( \frac{5}{x} \), \( \frac{3}{x^2} \), and \( \frac{1}{x} \) all approach 0. Thus, we have: \[ \lim_{x \to \infty} \frac{x^2 + 5x + 3}{x^2 + x + 3} = \frac{1 + 0 + 0}{1 + 0 + 0} = 1 \] ### Step 4: Identify the Indeterminate Form Since we are looking at the limit of the form \( 1^\infty \), we can apply the following transformation: \[ \lim_{x \to \infty} \left( \frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x = e^{\lim_{x \to \infty} \left( \frac{x^2 + 5x + 3}{x^2 + x + 3} - 1 \right) x} \] ### Step 5: Simplify the Expression Inside the Exponent Next, we need to simplify \( \frac{x^2 + 5x + 3}{x^2 + x + 3} - 1 \): \[ \frac{x^2 + 5x + 3 - (x^2 + x + 3)}{x^2 + x + 3} = \frac{(5x - x)}{x^2 + x + 3} = \frac{4x}{x^2 + x + 3} \] ### Step 6: Multiply by \( x \) Now, we multiply this by \( x \): \[ \lim_{x \to \infty} \frac{4x^2}{x^2 + x + 3} \] ### Step 7: Simplify Again We can divide the numerator and the denominator by \( x^2 \): \[ \lim_{x \to \infty} \frac{4}{1 + \frac{1}{x} + \frac{3}{x^2}} = \frac{4}{1 + 0 + 0} = 4 \] ### Step 8: Final Limit Calculation Now we can substitute this back into our exponent: \[ e^{\lim_{x \to \infty} \left( \frac{x^2 + 5x + 3}{x^2 + x + 3} - 1 \right) x} = e^4 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to \infty} \left( \frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x = e^4 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|75 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|14 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(x to oo)((5x^(2)-2)/(3x^(2)+8))=

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

lim_(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

lim_(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

lim_(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x is equal to

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

lim_(x to 2) (x^(3) + x^(2) + 4x + 12)/(x^(3) - 3x + 2) is equal to

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x to 0) ((2^x +3^x + 6^x )/3)^(3//x) is equal to :

lim_(x + 5^(+)) (x^(2) - gx + 20)/(x - [x]) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE main (Archive)
  1. Suppose f (x) is differentiable at x=1 and lim (h to0) (f(1+h))/(h) =5...

    Text Solution

    |

  2. Let f be differentiable for all x , If f(1)=-2a n df^(prime)(x)geq2 fo...

    Text Solution

    |

  3. If f is a real- valued differentiable function satisfying |f(x) - f(y)...

    Text Solution

    |

  4. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  5. If lim(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and ...

    Text Solution

    |

  6. L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], Iff(x)i s continuou...

    Text Solution

    |

  7. If x=e^(y+e^(y+e^(y+...oo))),xgt0, then (dy)/(dx) is equal to

    Text Solution

    |

  8. let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a...

    Text Solution

    |

  9. If f(x)=x^(n),"n" epsilon N, then the value of f(1)-(f^(')(1))/(1!)+(f...

    Text Solution

    |

  10. lim (xto (pi)/(2))((1- tan ""(x )/(2))(1-sinx))/((1+ tan ""(x)/(2 ))(x...

    Text Solution

    |

  11. If lim(xto0) (log (3+x)-log (3-x))/(x)=k, the value of k is

    Text Solution

    |

  12. Let f(a)=g(a)=k and their nth derivatives exist and be not equal for s...

    Text Solution

    |

  13. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  14. If y (x+ sqrt(1+x ^(2)))^(n) then (1+ x ^(2) ) (d^(2)y)/(dx ^(2)) +x (...

    Text Solution

    |

  15. lim(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

    Text Solution

    |

  16. lim(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

    Text Solution

    |

  17. If siny=xsin(a+y) , then (dy)/(dx) is (a)(sina)/(sina sin^2(a+y)) (...

    Text Solution

    |

  18. If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

    Text Solution

    |

  19. Evaluate lim(xtooo)((x-3)/(x+2))^(x)

    Text Solution

    |

  20. Let f (2) = 4 f(2) = 4 Then Lt(x to 2) (x f(2) -2 f(x))/(x -2) is

    Text Solution

    |