Home
Class 12
MATHS
If the lines x=a(1)y + b(1), z=c(1)y +d(...

If the lines `x=a_(1)y + b_(1), z=c_(1)y +d_(1)` and `x=a_(2)y +b_(2), z=c_(2)y + d_(2)` are perpendicular, then

A

`ac _(1) + a_(1) c =1`

B

` a a _(1) + c c_(1) + 1=0`

C

` bc _(1) + b_(1) c + 1=0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition for the lines given by the equations \(x = a_1y + b_1, z = c_1y + d_1\) and \(x = a_2y + b_2, z = c_2y + d_2\) to be perpendicular, we can follow these steps: ### Step 1: Write the equations in standard form The equations of the lines can be rewritten in a standard form. For the first line: \[ x - b_1 = a_1y \quad \text{and} \quad z - d_1 = c_1y \] This can be expressed as: \[ \frac{x - b_1}{a_1} = y = \frac{z - d_1}{c_1} \] For the second line: \[ x - b_2 = a_2y \quad \text{and} \quad z - d_2 = c_2y \] This can be expressed as: \[ \frac{x - b_2}{a_2} = y = \frac{z - d_2}{c_2} \] ### Step 2: Identify direction ratios From the standard form, we can identify the direction ratios of the two lines: - For the first line, the direction ratios are \(d_1 = (a_1, 1, c_1)\). - For the second line, the direction ratios are \(d_2 = (a_2, 1, c_2)\). ### Step 3: Use the dot product condition For two lines to be perpendicular, the dot product of their direction ratios must be zero: \[ d_1 \cdot d_2 = 0 \] Calculating the dot product: \[ (a_1, 1, c_1) \cdot (a_2, 1, c_2) = a_1a_2 + 1 \cdot 1 + c_1c_2 = 0 \] This simplifies to: \[ a_1a_2 + 1 + c_1c_2 = 0 \] ### Step 4: Conclusion Thus, the condition for the lines to be perpendicular is: \[ a_1a_2 + c_1c_2 + 1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|42 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Statement - 1 : For the straight lines 3x - 4y + 5 = 0 and 5x + 12 y - 1 = 0 , the equation of the bisector of the angle which contains the origin is 16 x + 2 y + 15 = 0 and it bisects the acute angle between the given lines . statement - 2 : Let the equations of two lines be a_(1) x + b_(1) y + c_(1) = 0 and a_(2) x + b_(2) y + c_(2) = 0 where c_(1) and c_(2) are positive . Then , the bisector of the angle containing the origin is given by (a_(1) x + b_(1) y + c_(1))/(sqrt(a_(2)^(2) + b_(1)^(2))) = (a_(2) x + b_(2)y + c_(2))/(sqrt(a_(2)^(2) + b_(2)^(2))) If a_(1) a_(2) + b_(1) b_(2) gt 0 , then the above bisector bisects the obtuse angle between given lines .

Find the condition for two lines a_(1)x+b_(1)y+c_(1)=0 and a_(2)x+b_(2)y+c_(2)=0 to be (i) parallel (ii) perpendicular

If a_(1) x^(3) + b_(1)x^(2) + c_(1)x + d_(1) = 0 and a_(2)x^(3) + b_(2)x^(2) + c_(2)x + d_(2) = 0 a pair of repeated roots common, then prove that |{:(3a_(1)", "2b_(1) ", "c_(1)),(3a_(2)", " 2b_(2)", "c_(2)),(a_(2)""b_(1)- a_(1)b_(2)", "c_(2)a_(1)-c_(2)a_(1)", "d_(1)a_(2)-d_(2)a_(1)):}|=0

Show that the lines a_(1)x+b_(1)y+c_(1)=0 and a_(2)x+b_(2)y+c_(2)=0,"where" b_(1),b_(2) ne 0 "are (i) parallel, if"(a_(1))/(b_(1))=(a_(2))/(b_(2))" (ii) perpendicular, if "a_(1)a_(2)+b_(1)b_(2)=0

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

The two points on the line x+y=4 that lies at a unit perpendicular distance from the line 4x+3y=10 are (a_(1), b_(1)) and (a_(2), b_(2)) then a_(1)+b_(1)+a_(2)+b_(2) is equal to (a) 5 (b) 6 (c) 7 (d) 8

If the lines (2x-1)/2=(3-y)/1=(z-1)/3 and (x+3)/2=(z+1)/p=(y+2)/5 are perpendicular to each other then p is equal to (A) 1 (B) -1 (C) 10 (D) -7/5

The asymptotes of the hyperbola (x^(2))/(a_(1)^(2))-(y^(2))/(b_(1)^(2))=1 and (x^(2))/(a_(2)^(2))-(y^(2))/(b_(2)^(2))=1 are perpendicular to each other. Then, (a) a_(1)/a_(2)=b_(1)/b_(2) (b) a_(1)a_(2)=b_(1)b_(2) (c) a_(1)a_(2)+b_(1)b_(2)=0 (d) a_(1)-a_(2)=b_(1)-b_(2)

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

To find the condition that the three straight lines A_(1)x+B_(1)y+C_(1)=0, A_(2)x+B_(2)y+C_(2)=0 and A_(3)x+B_(3)y+C_(3)=0 are concurrent.

VMC MODULES ENGLISH-THREE DIMENSIONAL GEOMETRY -LEVEL-1
  1. The equation of the line passing though the point (1,1,-1) and perpend...

    Text Solution

    |

  2. The equation of the plane through (2,3,4) and parallel to the plane x+...

    Text Solution

    |

  3. perpendicular distance of the origin from the plane which makes interc...

    Text Solution

    |

  4. The shortest distance between the lines (x-3)/(2) = (y +15)/(-7) = (z...

    Text Solution

    |

  5. The equation of the plane containing the line vecr= veca + k vecb and ...

    Text Solution

    |

  6. If the lines x=a(1)y + b(1), z=c(1)y +d(1) and x=a(2)y +b(2), z=c(2)y ...

    Text Solution

    |

  7. Let two planes p (1): 2x -y + z =2 and p (2) : x + 2y - z=3 are given ...

    Text Solution

    |

  8. Let two planes p (1): 2x -y + z =2 and p (2) : x + 2y - z=3 are given ...

    Text Solution

    |

  9. Find the shortest distance between the lines (x-23)/(-6) = (y-19)/(-4)...

    Text Solution

    |

  10. L(1):(x+1)/(-3)=(y-3)/(2)=(z+2)/(1),L(2):(x)/(1)=(y-7)/(-3)=(z+7)/(2) ...

    Text Solution

    |

  11. Let L1 and L2 be two lines such that L(2) : (x+1)/-3=(y-3)/2=(z+2)/1...

    Text Solution

    |

  12. Let L1 and L2 be two lines such that L(2) : (x+1)/-3=(y-3)/2=(z+2)/1...

    Text Solution

    |

  13. If 1,m ,n are the direction cosines of the line of shortest distance b...

    Text Solution

    |

  14. Find the equation of line of intersection of the planes 3x-y+ z=1 and...

    Text Solution

    |

  15. Find the distance of the point (1, -2, 3) from the plane x-y+z=5 measu...

    Text Solution

    |

  16. Find the equation of the plane through the line x/l=y/m=z/n and perpe...

    Text Solution

    |

  17. The ratio in which the plane vecr.( hati-2 hatj+3 hatk)=17 divides the...

    Text Solution

    |

  18. The equation of the plane containing the line vecr=hati+hatj+lamda(2...

    Text Solution

    |

  19. Equation of plane passing through (2,3,4) and parallel to the plane x+...

    Text Solution

    |

  20. Find the shortest distance between the z-axis and the line, x+y+2z-3=0...

    Text Solution

    |